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Abstracts

The article introduces the concept of word equation on context-free (CF) language
and the finite representation (unifier) of the set of solutions for this type of equation. The
article offers an algorithms for constructing the minimal unifier of word equation on CF
language, where the last is described by the unambiguous acyclic CF grammar. The single
and multiple variable instances cases are investigated as well as ambiguous and cyclical
CF grammars cases of the designed mathematical apparatus. The incorrectness of
J.A.Robinson's unification algorithm and resolution procedure in general case is proved.
Linear and non-linear systems of word equations on CF languages are proposed and
investigated. Some possible applications of the proposed concept to data and knowledge
mathematical modelling as well as to genetics and social engineering are considered.
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1. Word Equations

Assume some alphabet V = {Ul,...,vm} , with the set of strings in this alphabet
denoted by 7", and the set of non-empty strings denoted by ¥*. String se (¥ UT)* is
called a term with I" being the set of variables, and the substitution is called the set

d={y, »u,...y, >u,}, (1)
where 7,7, € are variables, “—” is the substitution sign and u,,..u, € V" are the
strings in the alphabet V' . Term s[d] is the result of substitution d in term s, term s[d] is
obtained from § by the means of substituting variables Vi€V by strings u; which
correspond to these variables as per (1). If

S S UY, Uyl Y Uy Y Uy ()
then
s[d] = ulﬁiluz...ujﬁilujﬂ...u,LTl.[u,+1 , (3)
where
4)

L

_ _{ui,,if ¥, €V}

¥, otherwise

Substitution d is called terminal substitution relative to term s e (V' U F)* —V"if
sldle V", (5)
i.e. if the result of this substitution in term $ is represented by a word in alphabet V' . In
this case, obviously, s and d are such thatb’ilrn,%,} Q{}’p~-~77,,} .
From [1-3] a word equation is the structure
s=s, (6)
where S and s” are terms such that term ss” contains at least one variable and “=" is the
equality sign. Terminal substitution d with respect to terms S and s  is the solution to
equation (6), when being applied to these terms, (6) becomes an identity:
s[d]1=s"1d], (7
where “="is the identity sign.
A set of solutions to (6) denoted by D[s =s"] is a set of terminal substitutions
relative to terms $ and s’
D[s=s"1={d| sld]=sTd]}. (8)
Obviously, in general D[s =s"] is infinite; therefore there is no algorithm for building
this set in a finite set of steps.
Given the above and depending on the practical purpose of this equation, one may
take two different approaches, which are conventionally called computational and
analytical.
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Computational, or existential, approach is limited to construct the only one solution
from the set D[s = s”] by the means of common algorithmics [1,2,4-6].

The finite representation of the family D[s =s'] is constructed under analytical, or
universal, approach; this finite representation is the substitution

d={y, 55,7, =5, )

where 5,€ (V ul")* are terms which in general contain variables; the substitution is such
that the following holds as per the above,

s[d1=sTd]. (10)

The substitution d is called unifying substitution or the unifier. In the strict sense the
lack of constraints for variables in terms S$;,...,S, makes the set of unifiers unlimited.
Therefore the concept of the smallest general unifier (SGU) is introduced; by substituting
the terms from the set (¥ UT)" for the variables in terms S,,...,5, so that (10) becomes
identify one may obtain any other unifier.

The construction of SGU defined by (9) is called extended or string unification [1,3]
unlike the unification proposed by J.A.Robinson [7], which serves as the basis for the
resolution procedure providing the logical inference in various applied versions of first
order predicate logics, and in particular in Horn clauses being the parent language of
logical programming [8,9].

However result [3] applies to string unification, and according to this result the
problem of building the SGU set of terms § and s  in general does not have an
algorithmic solution.

On the other hand the attempts to design such an algorithm for the useful and
applied modifications of word equations are quite practicable.

The word equations on context free languages discussed in this article represent one
of such modifications.

2. Main Concepts and Definitions

Context-free language L(G) <V * s generated by the means of CF grammar
G=<V,4,a,,R >, (11)
where V and 4=1{a,.,,....a,} are correspondingly terminal and non-terminal alphabets,
o, € A is grammar axiom and R is the set of rules in the form @ — f under which € 4,
Le vy A)*; this set is also called the scheme of the grammar, or, for short, scheme [10].
The application of the rule @ = B to the string x=x,a x, involves the substitution of the
string B for the non-terminal symbol (“non-terminal”) & which results in the string

x'=x,fx,, and is generally expressed as x = x” and is called direct generation. Note that
the use of the same symbol ”— > within the conceptual framework of the word equations

6
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and CF grammars is quite natural, since in both cases the symbols (variables, non-
terminals) de facto are substituted by the corresponding strings. Crucial semantic
difference between seemingly identical structures is that when a substitution is applied to a
term (similarly as when it is applied to a word equation) then all the variable instances in
the term (terms) are substituted by the only one corresponding string; however, when there
are several instances of non-terminal ¢ in string xe (VU 4)" and when the scheme R
contains several rules & —> B,,...a — B, then each non-terminal instance may be
substituted by any string B,, i=1, ..., m.

"Generation" relation within the set of strings in alphabet VU A is transitive
reflexive closure of the direct generation relation and is denoted by =". Furthermore
x=* ¥, if either x=x" or x=>x", or there is a string x"€ (¥ U A)" such that x = x”,
X ="x.

String we V* is a word in language L(G), if o, =" w, therefore

LG ={w| oy =" w&we V], (12)

String x e VoA, generated (derived) from the axiom &, of CF grammar G, is
called the sentential form (SF) of this grammar, and a set of SFs is hereafter denoted by
SF(G):

SF(G) ={x|a, =" x}- (13)

Therefore, the word we L(G) represents sentential form free of non-terminals, and
L(G)c SF(G).

Assume the generation under which x substitutes for the left non-terminal of all non-
terminals in SF, i.e. the rule @ — B involves transformation x=uax to uf X', where
ue V*,x'e (VUA)"; this type of generation is called canonical generation. Concurrently
CF grammar G is called unambiguous if there is only one canonical generation for each
string w in language L(G). Alternatively, ambiguous CF grammar G allows for the
existence of at least one string in CF language L(G) with more than one canonical
generation.

CF grammar which allows for x=" x generation is called cyclical. Alternatively,
CF grammar which makes this type of generations impossible is called acyclic.

Example 1. Assume, CF grammar G with non-terminal alphabet 4 = {060 NoA ,052} s
terminal alphabet V :{a} and scheme R=|o, >0, 0 >, 0500, —>ad s
ambiguous, since the word a is assigned a couple of canonical generations: &, = &, = a
and &, = &, = a . Moreover, G is acyclic, but grammar G’ with the same ¥ and A4, and
scheme R'= RU{% -a,,q, —>0!1} is cyclical, since it enables generation o =7 o,
(similartoc, =" @, ). m

The problem of the recognition of the cyclicity of CF grammars is algorithmically
solvable; however, the problem of the recognition of their ambiguity is non-solvable [10].

The following construction is a word equation on CF language L(G) generated by
CF grammar G =<V, 4,0,,,R>:
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<s=5,0>, (14)
where the first component in this sequence is called the kernel and has syntax similar to a
word equation; 6 Z{ Y, = PV — ﬂ,} is the suffix, and it defines sets of the values for

variables ¥,,--»¥,, which have place in terms § and s, by the means of strings fB,,.... B, in
alphabet ¥ U 4. Equation (14) may be read as “s=s", where 8 ”. The set of the values for
variable ¥, is a set of strings in terminal alphabet ¥ which are generated by grammar G
from string 3, (denoted by symbol V which is different from 7 ):

V.8 =luly, > Bes&p =" uskuev|. (15)

Suffix 0 defines a set of substitutions which are denoted by 25 and which are

considered terminal substitutions relative to terms § and s”:

25: UH% D Upsen ) 9”1}}

uleV(yl,(s) , (16)

uleV(;}'l',é)
such that strings S[d] and s’[d] in alphabet ¥ correspond to each term substitution

de 25 . If terminal substitution d is such that
s[d]=s'd], (17)
then it is called the solution to equation (14). Therefore the family of solutions to a word
equation in CF language L(G) <s= §',0> is the following set:
Dls=5,81={d|de Y s&sld]=s[d]]. (18)
By default only so-called correct equations are considered; strings s[0] and s[8] in

alphabet V' U A within these equations are sentential forms of grammar G. The fulfillment
of these conditions ensures that

V(5.0)=|w|s(8]=" w&we V| L(G), (19)

V(s,8)=|w| s[0]>" wawe V| C L(G). (20)
where the set of strings determined by term S(S') and suffix 0 are denoted with the same
structure which is used for denoting a set of values for the variable % in (15). One may
easily verify that this type of generalization is quite acceptable, since ¥; is a term and, under
(199-Q20), V(.. B)={wl7lB1=" wawe V") =|w 71" wawe V'] =|w| B =" wawe V'],
which corresponds to (15).

Example 2. Consider CF grammar G with non-terminal alphabet A ={ay. 0,0,
terminal alphabet V={0,1} and scheme R={o, > o, 0, >0, a0 —0,0, >1},
Obviously L(G) = {1”01” |n2= 0}. Consider the following word equation in CF language
L(G):

<y =nl {n->all, -1l >, (1)

For this equation
V(1,.0)=lu| 115" u&ue (01" =[1"01" [ n20], (22)



Special Edition: Hannover Annual ~ Vol.1,2011.

V(1,,8) =lu 1oy 1 =" u&ue 0,17 =[1"01 0> 0]. 23)
Therefore,

V(s,8) = V(11y,,6) ={1"?01" |n 2 0} € L(G), (24)

V(s',8) = V(1,1,6) ={1"?01"? | n 2 0} < L(G), (25)

Y s=lln s 1oy, 5120 n20&m2 0], (26)

Terminal substitution d ={y, =10111,, = 111011} is one of the solutions to (1),
since $[d]=1110111,sTd]=1110111, and therefore s[d]=sTd].
The set of solutions to (21) is

Dls=5,81={ly, 101"y, > 1"201™'} |n 20} 27)
Furthermore, the set of solutions to the word equation
1171 :}/21’ (28)
which is the kernel of equation (21), is
D[szs’]:[wﬁul,yﬁn uHue(o,ﬂ*}. . (29

As we can see, syntax difference between the word equation on CF language (14)
and the word equation (6) is the suffix added to the later; as a result the sets of values for
variables ¥, presenting in terms S and s’ are the sets V(¥,9), but not V* as in (6).
Moreover s[d] and s[d] in (6) may be any strings in alphabet ¥ while in (14) they may
only be the words in language L(G); as a result (14) is called a word equation “on CF
language”. Further, for short, we shall call it simply "equation".

Having made these refining remarks let us now consider the algorithmic framework

for constructing a finite representation of the family of solutions of (14), i.e. set
D[s=s",0].

3. The Form of the Finite Representation of a Set of Solutions of the Equation

The problem of constructing any type of finite representation D[s =s’,8] is twofold.
The first task addresses the issue of specifying the form of this representation, and the
second task concerns the development of the algorithmic complex which will construct
this representation in finite set of steps.

First, consider the easier issue. Assume X and x” are a couple of the sentential
forms of unambiguous and acyclic grammar G. Each of these sentential forms naturally
defines a set of strings of language L(G) generated (derived) from this SF:

W, ={wix="w&we v}, (30)
, * *
Wx,z{w|x:> w&weV }, 31

and therefore sentential form x(x') is the finite representation of the set Wy(Wy). The
following lemma holds (presented without proof):

Lemma 1. If
W=W,nW.={@} (32)
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then there is a sentential form  such that
Wz{w\xﬁ*y&x':*y&yﬁ*w&we V*}.l (33)

Consequently the intersection of sets Wy and 7, is a set of words of L(G) generated
from sentential form y, which itself is generated from SF * and x” simultaneously.

Example 3. Consider CF grammar G from Example 2 and both of its sentential
forms x=lo,e, and X' =,00,. Here W, 2{1"01” |n 21} , W ={101} , W=W, W, ={101},
There are two sentential forms generated from X and x’, and both generate the word 101:
y=10c, and y=101 m

Obviously SF y in (33) is the finite representation of the non-empty intersection of
sets Wy and W/, which is infinite in general.

This finding lays at the basis of the approach for constructing the finite
representation of the set D[s = s',0].

We shall be restricted by the case of the single instances of variables in equation
(14) or, which is the same, in term s’s (or s5”).

Obviously, if

W =V(s,6)NV(s’,8)={D} (34)
then the equation <s= s’,0 > does not have a solution, i.c.

D[s=s",81={@}, (35)
and if

W =V(s,0)NV(s’,8) #{D} (36)

and since s[d] and s'[d] are the sentential forms of grammar G, then according to Lemma
1 the finite representation of the set W is SF y generated (derived) from s[d] and s7d]
simultaneously. Consequently, the finite representation of the set D[s =s’,8] is the set
5=ln - Bt - Bl (37
such that
W =|w|s[8]=5[5]=y&y=" w&we V. (38)
It is easy to verify that B,.....,3, are the strings in alphabet ¥ U A, generated from
strings B,,-... B, accordingly by derivations s|d|=" y and s]d|=" y.
The set § will be named the unifier of equation (14) for short.
Example 4. Consider CF grammar G generating atomic formulas (“atoms”) of the
predicate logic language, which corresponds to the elements of triadic relations
P, C BXCXE | j=],...,m, and which are written as p :b/c/e  where p is the name of

(IR

the relation, and b,c,e are the values from the sets B,C and E accordingly; “:” and *“/” are
the separators. The scheme of this grammar may look the following way:

10
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(B)—>b,, (39)

<E > —e,
where “(” and “)” are metalinguistic brackets and they are different from angle brackets
used for lists, 4 ={<atom>,<P>, (B),(C), <E>} , the axiom of this grammar is (afom), and
Diseeos DopsbiresDy €15 Cp €€, are strings in terminal alphabet ¥, which do not contain
separators “:” and “/”. It follows from (39) that G is unambiguous and acyclic.
The word equation on CF language L(G) is the following:

<p:xlyle=z:t/cy/s, {x —><B>,y —><C>,z —><P>,t —><B>,s —><E>} >. (40)
Obviously, the equation is correct. According to (37), the finite representation of the set of
solutions to this equation will be the following set

gz{x—><B>,y%cz,z—>pl,t%<B>,s%el}~ 41)
Here
s[0]=p, :<B>/<C>/el , (42)
s161=(P):(B)/c, (E), (43)
s[0]1=5T81=p, :<B>/cz/e, m (44)

Generally, there may be more than one unifier to equation (14); it relies on the
possibility of the sentential forms of grammar G which are connected to SF y in (38) by
means of “generation” relation. Moreover, both 3’ =" y and y =" y” are possible, and
(38) will apply to both " and »”. As a result the next paragraph introduces the concept
of the minimal unifier similar to SGU within the resolution procedure; the algorithmic
framework presented hereafter facilitates the construction of minimal unifiers for
equations considered.

11
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4. The Construction of Minimal Unifier of Equation with Single Instances of the
Variables

Assume that G=<V,4,0,,R> is still unambiguous acyclic CF grammar. The
following algorithm for constructing the unifier makes use of Lemma 2 known from [11]:

Lemma 2. Set SF(G) of the sentential forms of unambiguous acyclic CF grammar
G is partially ordered by the relation =" .m

Moreover, set SF(G) contains maximal element &,, since for every SF
xe€ SF(G) o, =" x. There is a set of upper bounds X for each subset X < SF(G),
and this set of upper bounds is such that for each element xe X and each element x€ X
the following holds: x =™ x . Naturally, there is minimal upper bound sup, X for set X,
and this minimal upper bound is the sentential form of grammar G such that for any other
SF xe X the following holds: X =" sup,; X . In general subset X€ SF(G) may have a
set of its lower bounds X , and for each element of this subset x€ X and for each element
x€ X x="x. Moreover, there may be maximal lower bound inf, X among all lower
bounds, and this maximal lower bound will be the sentential form such that for any other
SF xe X the following will hold: inf; X =" x.

Example 5. Consider grammar G from Example 4 and set
X ={(P):5,/(C)/e,, (P):(B)/c,/ ey, p, (B e, /e,}, for which

sup, X =(P):(B)/(C)/e,, (45)
inf,X=p,:b/c/e,. m (46)

Getting back to the issue presented in paragraph 3 dealing with the problem of the
finite representation of the intersection of two sets Wy and W, represented by sentential
forms X and x’, notice, that SF y=inf;{x,x"} is minimal among all these
representations since all other representations are derivatives of SF ¥ =inf,{x,x’}: any
other representation is either SE " which is generated from y, or finite set consisting from
SF ¥, ), k=1, generated from SF y and such that

k
U Wy{ = Wy . 47)
i=1 "1

Having said the above, we will refer to the finite representation of the set of
sentential forms X < L(G) as to its minimal finite representation. In the same sense, the
unifier of equation (14) corresponding to SF y =inf;{s[5],s[81} will also be minimal
unifier, therefore in subsequent discussion we will refer exactly to this minimal unifier.

As part of the next comment to the concepts and definitions introduced, we would
like to note that conceptually this framework is one of a number of possible approaches to
the refinement and the development of algorithmic framework to define the concept “the
quantity of information” [12].

Notably, if the sentential forms of unambiguous acyclic CF grammar G are
"constructive objects" by A.N. Kolmogorov (and the grammar itself is “the method of

12
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programming” according to the definitions in [12]), then constructive object X' € SF(G) is
more complex compared to constructive object € SF(G), if x=* ¥, ie. X’ is generated
from X in grammar G (when x =" x’, object x” is at least as complex as X, since either
x=x" or x=" x"). The length of the “program” implementing the generation of x” from
X (in [12] the length is denoted by /(p)), will naturally be the number of applications of the
rules of CF grammar within the derivation x =" x” (derivation length of x =" x").
Along with term “relative complexity” we shall use of term “relative informativity” as in
[11], and therefore object x” is more informative compared to object X (contains more
information), if x =% x”. Given that, sup, X is the object with the highest informativity
compared to other objects which are less informative compared to objects from set .X.

Example 6. Speaking of grammar G from Example 4, object X = <P> :b, /<C>/e2 is
more informative compared to object x =(P):(B)/(C)/e, since x =" x’. Obviously it is
the result of x” containing string b, in alphabet ¥, which is generated from non-terminal
(B). m

The assumption of unambiguity and acyclicity properties of CF grammar G and the
assumption of single instances of all the variables in equation <s=s’,6 > makes use of the
following algorithm for constructing the minimal unifier of that equation:

begin;
if y=inf {s{6].56] exists
then do;

construction of generation s =" y in CF grammar
6:< VaAU{YI7'~77//}’aO5RU5>;
construction of substitution 8, =y — B |s=um, & y=u,Bu, & yeT};
construction of generation s’=" y in CF grammar G ;
construction of substitution Sy = ly=BIs' =un}, & y=u/Bu; & ye T} ;
return (65, W 0);
end;
else return (D));

end.

Obviously, in those cases when inf {s[6],sT6] exists, then grammar G is
constructed from grammar G, and the set of non-terminals in grammar G along with all
o € A includes all the variables which present in the suffix of the equation (they become
non-terminals of G , which is acceptable since they enter the equation only once), and the
scheme is set-theoretical union of scheme R and the suffix. As a result the generation
mechanism in CF grammars may be used for constructing substitutions 65 and S5 which
are formed by means of including all rules ¥ = B for all the variables (non-terminals)
which have place in terms s and s”, and all the sub- strings B of string y, which are
derived from these variables (non-terminals) within generations s="y and s'="y in
them. In the result of algorithm operation one will get substitution which was obtained by

13
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the union of &5 and Jy . If inf,{s[d1,51d]} does not exist, then, obviously, the equation has
no solution.

Example 7. Apply the algorithm described above to the equation from Example 4:

<p:xlyle =z:t/cz/s,{x—)<B>,y%<C>,z—><P>,t—><B>,s—><E>}>,

First construct y=inf,{s[6],s51}= p, I<B>/C2 /e, then from generation
p:xlyle, =" p,:(B)/c,/e obtain substitution & ={ —(B),y—c¢, }, and from generation
z:t/ey/s=" p:(B)/c;/ e obtain substitution Iy = {t=pt —(B), s —al.

The result:

05 Uy ={x—><B>,y%c2,z - p,t %<B>,s —>el}, n

The following Theorem 1 proves the fact that as a result of algorithm operation
given inf {s[61,s[6]} we obtain the minimal unifier of the equation <s=s’,0 > hereafter
denoted by U[s =+",0].

Theorem 1.

Dis=s,0= U (i S Uty UL
ulev(yl,ﬁxuﬁvf)
A7 (48)
u[eV(yl,ésuﬁsr)

Proof. Denote the right-hand side of (48) by /7, and set 6, W, ={¥, = B...7, > B}
denote by &§. Assume, that D[s =s",0]# /[ . The assumption is only possible when either
Dis=5,01- A #{@}, or J-D[s=s,01#2{0}. The existence of substitution
de D[s=s",8] which is not an element of set /7 is equivalent to the existence of word
w=s[d]=s"d] which is not generated from SFy=inf {s[0],sTd]}. However, under
Lemma 1 there are no words which belong to the intersection of sets ¥4} and 14}, and

are not generated from SF y. On the other hand, the existence of substitution d € [ which
is not an element of D[s=s",0] is equivalent to the existence of word w=s[d]=s"d]

generated from SF y=inf, {s{0],sT6]} and not belonging to the intersection W4 and
Ws’[d] which is again impossible as per Lemma 1. Therefore the assumption about the
inequality of sets D[s =s",0] and J{ is false. m
There is apparent relation between unifier U[s = 5,01={y > E],..., % - ,E,} and the set
of solutions D[s =s",8] of the equation <s=s,8>:
Dls=5,01={{n = up ¥y =} | B =" u & .. & B =" w) & {uy,ouy V). (49)
It is noticeable that the key element of the algorithm is the construction of the

maximal lower bound of the set consisting of two sentential forms of unambiguous acyclic
CF grammar. The corresponding algorithm is presented in the following paragraph.

14
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5. Building the Maximal Lower Bound of the Set of Sentential Forms of
Unambiguous Acyclic CF Grammar

Let us have set {x,x"}< SF(G). Practical criteria evaluating existence of inf, {x,x’}
is defined by the following Theorem 2 [11].
Theorem 2. If G=<V,4,,,R> is unambiguous acyclic CF grammar, while X and

x” are its sentential forms, then inf{x,x"} exists only if ¥ =sup,{x,x’} does not contain
non-terminal @€ A, such that y=zez,z,z’e (Y U A), and set R includes two rules & — /3
and @ = B’ suchthat z% =" x and z87 ="y . m

The essence of this Theorem is illustrated by
Example 8. Let us have grammar G from Example 4 and sentential forms

x={(P):b,/{C)/e,, X'=(P):b,/c,/e,. One may easily construct
y=sup,{x,x’} =(P):(B)/{(C)/e,. This SF contains non-terminal <B> that results in
scheme R including rules (B)—b, and (B)—b,, so that y=z(B)z'; z=(P): ;
Z’=/(C)/e,; so from zbz' =" x, zb,2 =" X’ we know that inf,{x,x"} does not exist. m

inf,{x,x"} constructing logics is defined by recursive function I from three
arguments; the first two are sub-strings of strings X and x’, while the third one is sub-
string of string sup,, {x,x’}:

[(xlaxzsz)zu‘](ﬁl’ﬁz, a)‘[(zl’zzag), (50)
ifxlzuﬁlzl, xzzuﬁzzz, Z=UE, 0(:>*E, a:*ﬁz,and
[(AA A=A, (51

where ue V*, {B.z, B, zz,z}g(VuA)*,ae A,and A is an empty string.

Evidently, function 7 is constructed in the manner implementing synchronous left-
to-right parsing of strings X, X" and sup, {x, x’}; during this process the resulting string
part accumulated throughout previous steps gradually includes: string u in alphabet V that
is prefix of the remaining parts X, x” and sup; {x, X ; result 7( B R B &), where B and
B’ are sub-strings of X and x” following u and derived from non-terminal ¢ located
directly after u in sup, {x, x’}; and the result of application of the same function / to sub-
strings X, X" and sup, {x,x} following B,B and @ accordingly. If all the three
arguments / are empty strings, parsing is completed, and the empty string obtained in
accordance with (51) concatenates with the accumulated result without changing it and
terminates recursion at the same time.

Theorem 3. If inf,, { x, x"} exists, then

inf, {x,xy=1 (x,x,sup, {x,x}). (52)

Proof. According to the definition of the maximal lower bound, y = inf, {x, X,} is

a sentential form generated in grammar G simultaneously from X and x’, and with this
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y="7 is attributed to any other SF ¥ fulfilling these conditions. Both implies from (50)
where 7 (B, B,. @) plays the key role. The definition of the minimal upper bound results in
a=" B, a="p,, therefore, ﬁl * Bz (otherwise B, and Bz would have been taken up by
sup,, {x, x’}). Pursuant to theorem 2 and assumption on the existence of inf, {x, x} only
two variants are possible in which B, and [72 are unequal — B =a B,#0 and
B.=a, B, #a. In both cases the resulting string includes string inf,, {8,, B,}, generated
from non-terminal ¢, or, in other words, not equal to this non-terminal. Recursive
application of (50) results in 1 (x, x", sup, {x, x'} ) being exactly inf, {x,x"}
inf,, {x, x’} construction logics and its relations with sup, {x, x’} are shown on

Fig.1 and in Example 9.

w o, wo o B wa L _wy % owe
x L ;;
u; i U uj . Ujt1 Up-1 .‘Zl. Uy
a a2 ., N I
y
U — L L 2 vee Ul Uk
’
x B, a, a,
a
a ) o
xu oL . Y B we .
u; B 2R u; L. |u ...
¥
uj ﬂ,, LB U; Y Ujs g ..
;
x a, a,
)

Fig.1. Relations between X, x’, sup,{x,x’} and inf,{x,x’}: a) y=sup,{x,x}; b)
y=inf,_ {x,x"}.
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Fig.1 shows that non-terminal ¢, presenting in Sup, {x, x"} while constructing
inf,, {x, x’} is replaced by string B, derived from ¢, in the derivation sup; {x,x} =" ¥’
non-terminal ¢, similarly, is replaced by string B, derived from it in the derivation
supg {x, ¥’} = x’;, and, finally, non-terminal @, is added to inf, {x, x’} as is. Thus, x” is
more informative than X and sup, {x, x’} "in the sense" ¢, X is more informative than
sup,; {x, x"} and x” "in the sense" ¢, ; while as per &, ¥, x” and sup,, {x, x’} are equally

informative.
Example 9. Assuming we have grammar G from Example 4 and sentential forms

= b, H(C)IE) X' =(P):b, e, IE). While
sup,, {x, X"} =(P):b,/(C)/(E). (53)
In accordance with definition of function 7,
inf, {x, xy =A-1(p,,(P),(P))-1(:b,/(C)/(E), :b,/c, /(E)),
1(p.(P), (P)=p,.
I('b/< >/< > /e /< >)

b/1(<> 2<>)1(/<> KE). [(E)),
1(Che ()= oY
o) B HEN= -1 (EL () (ED-1 (5,8, 8),
1({C),(C), (c)=(C),
[(AAA)=A.
o inf, {x,x"}=p,:/b/c,/|(E). (55)

Here X is more informative than x” as per non-terminal <P>, x" is more informative
than X as per non-terminal <C>, and as per non-terminal <E > both the SFs are equally
informative. m

The only uncovered entry of the offered algorithmic complex is constructing of
sup,; {x, x’}. This entry is defined by recursive function S from three arguments being
sentential forms of unambiguous acyclic CF grammar G =<V, 4, &, R >:

S(x,xy,2, Bz), if Qeed)z=z,az,&(Fa— BeR)
S (x,5,2)= 2Bz, x&zp, =" x, (56)

z otherwise..

It is evident that generation of SF that generates both X, and X, is implemented at
every recursion step as long as it is possible through application of some rule & — 8 to
non-terminal & having place in the third argument. The SF that breaks the continuity of
such generation is sup, { x, x’} . It is clear that the order of selection of the next non-
terminal for generator is non-essential.
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Theorem 4. For sentential forms ¥ and x’ of unambiguous acyclic CF grammar
G=<V,4,ap,R>
sup; {x, X’} =S (x, X, ). (57)
Proof is evident. m
Corollary 1. Operations inf; and sup, are commutative and associative. m
Example 10. As applied to grammar G from Example 4 and objects * and x* from
Example 9
supg {x, X'} =S (x, ', (atom)) = S (x, x', (P):(B)/(C)/(E)) =
=8 (x,x,(P):b,/(C)(E))=(P):b /(C) {E).
In general the logics underlying the analyzed algorithmic complex can be illustrated
in the manner shown on Fig.2.

7 —
u up W Vi SEWY Uy Y, U

ﬂé\ U Ui B, Uk+1 S[S] = ulﬂ,,uz'“uk ﬁz}ukﬂ

inf, {s[6],5sT61}

S0 =u/Bu;..a B u]

r+l

’ I [V

ST=wy .y u,

-

Fig.2. Relations between eclements of equation <s=s,0> and its unifier

(5:{7/1 %ﬂl’"'s% %ﬂ[}’ g:{% %,B],...,j/, %B/})

Note that algorithmics of solution of "classic" word equations [1, 2, 4] is similar to
the described one. It is based on left-side parsing of terms § and s in the process of which
their single-symbol prefixes are compared, and depending on the variant (<v,0">,<0,7’>,
<yV'> or <77 >) either termination is executed (at v#v') or one or two residual
equations are remained (the latter variant corresponds to the one when both the terms start
with variables, i.e. <7, 7’>, which is processed by two alternatives Y=y and y=vY"
with introduction of additional variable ¥”). As a result there is a tree with initial equation
s=s" at its root and residual equations at its other nodes. Herewith, each path from its
root to the terminal node (leave) where generation of a new equation is impossible
corresponds to a term similar to inf {s[8],5[6"]} in its sense.
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A deeper analysis of relations between word equations on CF languages and
"classic" word equations (i.e., generally speaking, on language 7", where sets of values of
variables in these equations also are ") is beyond the scopes of this article.

With this we finish our analysis of mathematical apparatus of solution of word
equations on CF languages for the cases of the variables single instances to equation and
unambiguous acyclic CF grammars and proceed to examination of possibilities of
generalization of the obtained results on general cases.

6. Constructing the Minimal Unifier of Equation with Multiple Instances of
Variables

Assume we have equation <s=s’,6> with unlimited number of instances of
variables in term s”s .

It is essential that when some variable 7 enters term s's more than once, but
Y — B€J is such that fe ", then multiple instance of 7 is equivalent to its absence, and
initial equation <s =s",8 > is equivalent to equation <s[{y = B}1=sT{y = B}].6 >. Such
variables are “hidden” constants in their essence.

Having generalized this observation, we can exclude from consideration such
multiple instances of some variable ¥, for which ¥ = B€ 0 and set V(7,6) is finite. If
initial equation <s=s",8 > has such variable, the latter is equivalent to 7=V (¥,6)| of
equations

<y 2 wil=sTy > ul.o-{y - B} >,
(58)
<[y = ud1=sTy > u, 31,61y — B} >,
with V(7,6) ={u,,..,u,} . It is evident that none of these equations contains variable ¥ in
terms S and s”. If initial equation <s =s",0 > contains ¢ similar variables 7, >V, it is
equivalent to

q
H”V(%/ﬁ)\ (59)
=

of equations of type

<[y, 2wy, —>uq]=5'[},iI =Y —uyl,0 >, (60)
with
6 =6_{yi| _>ﬁiq "“’yiq _>ﬁiq}’
u e V(v ,6),
1€ V(7;,,9) 61)
ug € V(;/I-q,é).

From now on we will consider only such equations with multiple instances of
variables where all variables corresponding to “hidden” constants were pre-excluded using
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the described techniques, which means that for each of the remaining variables 7 in term
s’s at least one set V(7,0) is infinite.

Let us assign a new unique variable to each instance of variable ¥, € {¥,--7,},
which will result in term s’s having &, of unique variables of type 7",-..¥*" (superscript

denotes the instance number), with each of this variables presents in this term (i.e. in the
equation) once. We will execute such operation with regard to all variables included into
term s’s several times, thus obtaining a new equation

<s,=s.,0.>, (62)
having

1
2k (63)
i=1
of variables with single instance (if variable 7; is included into s’s once then k,=1), while

suffix O instead of one element of form /i B i includes % of elements of form
v =B,y = BLi=1,..,1

We will assign the algorithm described in paragraphs 4-5 to equation (62) and
construct unifier

l k’ . —_—
&=y U {n” =B (64)
=1 j=l
The question arises how these unique variables can be converted back to their
“cloned” originals, i.e. multiple instances. This problem is resolved by Lemma 3 obtained
by deepening of Lemma 2 and given without evident proof.
Lemma 3. Assuming that X is non-empty string in alphabet V' U 4 | and
SF(G)={x|x=" X'} (65)
is the set of all strings in alphabet V' \U 4 generated from string X in unambiguous acyclic
grammar G =<V, 4,0, R>. Then set SFy (G) is partially ordered in relation to =*, and
supG SF, (G)=x. m
It is clear that the set of solutions of initial equation D [s =5",6] can include only
such substitutions that in connection with to all instances 7.
rules with the same right part:

% . .
yoees V9 of variable 7, contain

YO su,., 7" su, (66)

with ue V", Therefore,
— ! PR — —(r
§=U {7,>B B =inf; {B"...B"}}, (67)
i=1

where the maximal lower bound is related to the set of SF) B; (@) objects derived in
RO

grammar G from . If some i has no inf, { B",..., B}, the initial equation has no
solutions.

The described algorithm is illustrated by the example below.
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Example 11. Let us consider we have grammar G from Example 4 with the scheme
augmented by rule

(B)=(C), (68)
that enables instance of strings of type P :¢/c/e along with strings of type p:b/c/e into
language L(G), which, in its turn, is equivalent to

P,,g(BuC)xCxE. (69)
Equation
<p:xle,le=z:ylxls, {x—><B>,z%<P>,y—><P>,s —><E>}> (70)
after “cloning” of variable X looks like that —
<p:xVc,le=z:y/xP /s, {xV —><B>, x@ —><B>, z —><P>,y —><B>} >, 71)
Its unifier is
&:{x(l)—><B>,zap1,y—><B>,x(2)—)cz,s—>el} (72)
Consequently, unifier of the initial equation is
5={x—>cz,z—>pl,y—><B>,s—>el}7 (73)

due to inf; {<B>, ¢ }=cy,as <B> =" .

Supposing equation (70) was related to the language generated by the initial
grammar from Example 4, it would have no solutions, because in this case infg {(B), c; }
would not exist (non-terminal <B > generates strings b;,...,D,, butnot ¢,). m

At the first glance it looks like the end, but the issue is much deeper, because due to
the semantics of variables (substitution of all instances of one variable with one and the

same string) /s and "y/5| are subsets of sets W15, and Ws;[a*], therefore:

Wi161 < Ws,16.1

W11 < W51,

which is illustrated by the following example.
Example 12. Let us consider grammar G from Example 11 and equation
<p:xlxle=z:ylxls, {x—><B>,z—><P>,y—><B>,S—><E>}>, (75)
with the only difference from equation (70) from the previous Example 11 being that the
left part of its kernel contains two instances of variable X . One can easily see that

(74)

Wc[é]:{pl:c/c/el\ce C}7 (76)
Ws*w*]:{p]:h/c/el\heBUC&ce cl, (77)

i.e. in (77) any combinations of 42 and C are permitted, while (76) permits only the
combinations containing / = ¢ . This confirms (74), and besides,
IWss1H CH, (78)

Wy 15,]HBUCIX|C|. w (79)
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The discovered fact means that in general even if some i from (68) contains

inf,{B",...B"’}, then considering (74) it does not mean that
k;
NW_; =3, (80)
= B

i.e. that the unifier of initial equation <s=5",0 > exists. After all
Weio1 Wes * 19 @®1)

s
does not mean that this is true for their subsets, and in general it is possible that
Va1 Wiz =90 (82)
To exclude this possibility, the solution of the initial equation, but with new suffix
S , is apparently required:

<s=5,0>. (83)
If this equation has unifier § , i.e.
Uls=s,8]=6, (84)

then § is indeed the unifier for initial equation <s=s’,0 > If it is not so, i.e. equation
(83) has unifier §® = § , then we obtain the following equation as a result

<s=5,00>. (85)
The equation requires new solution with the purpose of constructing unifier §® that is to
be checked whether it contains §” =5, i.e.

Uls=5,6"]=67, (86)
and execute the described actions up to i, so that
Uls=5,6"1=6". (87)

In [11] such iterative process is called “variables description clarification”. The
answer to the question whether this process can be terminated, which means whether word
equations with multiple instances of variables on languages generated by unambiguous
acyclic CF grammars can be algorithmically solved, would be negative. Considering
crucial importance of this question we will give a corresponding Theorem 5 with
substantiation that is quite specific in illustrating the “nature” of the process under
analysis.

Theorem 5 [11]. There exists word equation in language L(G), where G is
unambiguous acyclic CF grammar, with multiple instances of variables,

<s=5,0>, (88)
that with any i
Uls=s,6"128". (89)

Proof. Assuming we have the following CF grammar that describes a set of atomary
predicate logics language formulas with the single literal P — binary relation symbol —
and two functors /' and H — unary function symbols:
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<atom> - P(<term>, <term>),

<term> - < functor>(<term>),

< functor> —F,

<funct0r> —H,

<term> - < functor>(<term>), (90)
<term> - <constant>,

{

constant> — A4,

<constanz> —Z.

Let us consider equation

<P(H(x),x)=P(y,F()), {x— (term),y = (term)} >, 1)

that includes each of variables x and y twice.

Having executed all the steps described above we will obtain (non-terminal (rern)

for short is replaced by symbol “7”):

(step 1)

(step 2)

(step i+1)

and, consequently,
6" ={x—>FH(.F(H(F()..), y—> H(F(.HFHT)..)}#5?,

s[81=P(H(T),T),

s161=P(T.F(T)),

inf, {s[6],5[61} = P(H(T), F(T)), (92)
5. =ix" 5T,x? 5 F(T),y" > H(T),y? - T},

6 ={x > inf {F(T),T},y > inf {T,F(T)}}={x— F(T),y > HT)},

s[8]=P(H(F(T)),F(T)),

s'161=P(H(T),F(H(T))),

inf; {s{81,5161} = P(H (F(T)),F(H(T))),

8.9 ={x" = F(1),x® — F(H(T)),y" — H(T),y? = H(F(T))},
6 ={x —infg {F(1),F(H(T))},y — inf {H(T), H(F(T))}} =
={x=>F(H(T)),y = HFET)},

93)

inf,, {s[801.s [8V1}=P(H(F(..(H(E(T)))...)), F(H(..(F(H(T))..)) (94)

i+ functors i+l functors

where right part of each rules also has i+1 of reciprocate functors and starts with 7 and H.
Therefore, induction step shows that the described iteration process of equation (91)
solution is infinite, guod erat demonstrandum. m

The given example has both auxiliary and individual significance.
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Corollary 2. Robinson’s unification algorithm with multiple instances of variable in
being unificated atomic formulas is incorrect in general. m

Indeed, Robinson’s unification algorithm as it is described in the original [7] and
posterior applied works like [8,9] is an intuitive heuristic procedure which enables the
presence of similar variables in unified atoms, but processing of this situation is limited by
one step of the iteration process described above that in general may lead to improper
conclusion (i.e. resolution of irresolvable formulas through contrary atoms of form P(...)
and — P(...) with multiple inputs of instances). In particular, having applied Robinson’s
algorithm to a pair of contrary atoms <P(H(x),x),=P(y,F(y))>, with the pair
corresponding to equation (91), we will obtain unifier U={H(x)/y,x/F(y)} that, at the
first glance, indeed unifies it by transforming it into < P(y,x),= P(y,x)> by “reciprocal”
substitution of terms with variables. But having executed “direct” substitution of variables
with terms we will obtain pairs <PHF (). F(»),—~P(,F(y)> and
< P(H(x),x), = P(H(x), F(H(y))) >, none of which can be applied to resolution. While the
whole essence of unification is acquisition of variables substitution which are to be applied
in the consequent conclusion exactly in the variant of “direct” substitution.

Corollary 3. Resolution procedure with multiple instances of variables into atomic
formulas is incorrect in general. m

The wide look on the Robinson's unification made by F.Baader in his article
"Unification Theory" [1] and other authors of this workshop, of course, make the "naive"
unification essentially more strict, but like earlier works they operate by "mappings" from
one atom to another (however complicating this basis by various associated identities
forming so-called equational theories). Our approach is based on the quite different
formalization of unificated objects and unification itself. So the notions "incorrect
algorithm" and "incorrect procedure" used higher must be interpreted only in the sense of
the mentioned formalization.

Note that while proving Theorem 5 we significantly used multiple instances of a
variable into one of the terms of equation (88) kernel. Let us now analyze a case when
variables are included into any of terms § and s* once, and several times into the
equation. One may easily see that each variable can be included into equation not more
than twice — once into each of the terms. Such equations where terms § and s’ contain
only single instances of variables hereinafter referred to as linear equations, as opposed to
non-linear equations that allow for multiple instances of variables into the given terms.

Theorem 6. The problem of resolution of linear word equation on language L(G),
where G is unambiguous acyclic CF grammar, is algorithmically solvable.

Proof. As each variable is included into term § once, it is semantically equivalent to
non-terminal, so

I/Vs[6] = Wv*[ﬁ*] . 95)
This fact also points out to

W16 = W15, (96)
Thus,

Wis1 Wers1=Ws,16.0 "Wiiis,1, (97)
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which makes algorithm of constructing of equation (s =s",8) unifier with multiple
instances of variables described at the beginning of this Paragraph 6 and demonstrated by
Example 11 correct in this case. m

7. Assessment of Constructing the Minimal Unifiers of Linear Equation on
Languages Defined by the Means of Cyclic and Ambiguous CF Grammars

We remind you that cyclic grammar allows for y =™ x derivation. Suppose that CF
grammar G is not reducing, i.e. it does not contain rules of the form o — A, where A is
the empty string (otherwise G transforms into grammar G” which does not contain these
rules and is equivalent to G in the sense that L(G')=L(G) [10]). Furthermore x =" x is

possible only with at least one non-terminal &, for which ¢ =% «, so it enables the
cycling of recursive function S denoted by formula (56). In fact, having construct on some
step of recursion object z which contains non-terminal @, we will continue deriving
infinite set of steps, since there is always some subsequent non-terminal for its

. . . (1) (k) .
continuation from the chain =& =..= 0" =& which corresponds to

{a—a”, ... a"" 5o, a"” >a}cR. Here all the objects obtained in this way (

M k-1
2,02, 2,00 Z,,..,2,0

z,,7,0""z,) will be formally the minimal upper bounds of set
{ x,x"}. One may easily verify that this situation results from the fact that the set of SFs of
unambiguous cyclic CF grammar does not take the form of partially ordered set — it
enables generations of a=%a" and &' ="« (using the language of numerical
mathematics, @>a’ and o’ >a simultaneously). Therefore, we shall be restricted by
statement that the suggested apparatus itself is not applicable to unambiguous cyclic CF
grammars, although in terms of “informational” point of view the problem does not have
any signs of fatality (it is easy to reconstruct function S by “curing” it from cycling).

Regarding acyclic CF grammars in general, including ambiguous CF grammars, the
following theorem exists.

Theorem 7 [11]. The problem of assessing the existence of at least one lower bound
of set {X,»}, where x and y are sentential forms in acyclic CF grammar, in general does
not have an algorithmic solution.

Proof of the theorem [11] is based on the fact that in case of resolvability of the
problem of assessing the existence of inf;{x,y}, the problem of defining at least one word
we L(G) which has two different canonical derivations in grammar G would also have a
solution. It, in its turn, is equivalent to resolvability of the problem of clarifying CF
grammar unambiguous properties which does not have an algorithmic solution [10]. m

Since the algorithm for constructing infg{s[6],sT6]} serves as the basis for all
discussed algorithms for constructing various equation unifiers, the obtained result implies
the following corollary.
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Corollary 4. The problem of constructing the linear word equation unifier
<s=5,8> in the language defined by the means of acyclic CF grammar in general does
not have an algorithmic solution. m

Thus, the application area of the designed apparatus is restricted to linear word
equations on languages generated by unambiguous acyclic CF grammars; however this
restriction is practically insignificant.

8. Linear Equation Systems

By linear word equation system on language L(G) generated by unambiguous
acyclic CF grammar G we shall mean the following structure

<) = 8]y Sy =Sy 0> (98)

where m>2 | §,,5/,..,5,,,5,,,0 and equality sign denote the same as in (14); & is called the

suffix as before and is preceded by equation set called kernel. Only correct equation
systems will be considered, in which

{5,061,5[0],...,5,,[61,5,,[01} € L(G). (99)
Term substitution d with respect to terms Sl,Sll ,--,Sm,S,'ﬂ is the solution to correct

. . . ’ ’ . . o, .
equation system (98); it transforms equations §, =S$,;..,§,, =S,, into identities:

si[d]=si[d],
(100)
s, [d]=s,[d].
Correspondingly, the set of solutions to equation system (98), in which
S={y = B = B3, (101)

is the following set
DIsy = ${sesSy = 87y,01={d | d € Y s& si[d] = s{[d] & ... & 5, [d]=57,[d]1}, (102)
where 25 is defined by equation (16).

By analogy with (37)-(38), the finite representation (unifier) of the set of the
solutions to equation system (98) is the set

5 =Uls, =505, =50,81={1, = Bio¥, = B} (103)
such that
5[61=5([61,
(104)
sul81=5,[0]-
Furthermore,
D[s,=5,...,s, =5.,0]=1{d |d e 23 3. (105)
Equation system with at least one solution, i.e. such that
D[s, =s},...,s, =s.,01#{J}, (106)
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is called compatible, and the equation system with no solution, for which
DIs, =5/,...s8,, =5,,6]1={D}, (107)

is called incompatible.

Assuming all equations which are included in kernel of the system (98) are linear, a
rather evident algorithm for constructing its unifier will be considered.

The algorithm is represented by cycle with body involving two steps. During the
initial step 7 equations which form the system are solved independently of one another; it
results in formation of 7 unifiers of these equations:

Uls, =s1,61={r, > B... 7y > B/}
Uls; =s0,81={%, = B/, = B/}, (108)

Uls, = S;n5] =n-=>B8"vn->B"}
The unifier of equation system (98) is built during the second step:
5={7/1 _>ﬂ19"'9/)/l _>ﬂl}: (109)
where
B =inf (B ... 5"},
(110)
B, =inf {B'... 5"}
If at least one of 7 equation unifiers in (108) or one of / maximal lower bounds in
(110) does not exist, the system is incompatible. If all the enumerated objects exist,
recycling applies to system

) = S peeer Sy = Sy 0 > (111)
Algorithm stops, if j-th recycling results in
ULs, =5/,58,, = 5,,,0 ]=6", (112)
thus, 6 is the minimal unifier.
Example 13. Assume grammar G from Example 1, and the system consisting of
two equations
<p:xlyle=z:ylc,/s,
z:byle,/s=p x/ylt, (113)
(x> (B),y—>(C),z—>(P),s > (E), 1 > (E)} >.
From (108), the following is obtained:
Uls, =s/,8]={x—>(B),y 5 ¢,, 2> p,s > ¢, 1 = (E)},
Uls, =55,0]={x>b,,y > ¢, 2 p,,s > <E>, t —><E>}. (114)
Then, pursuant to (110),
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inf; {<B>,b2} =b,

infs{c,,0,} =¢,,

info{p, pi} = pi, (115)
inf; {el,<E>} =e,

inf, {(E),(E)} = (E).
Repeating the cycle in respect to

g(”={x—>b2,y—)cz,z—>p1,s—>el,t—><E>}. (116)
the following is obtained

Uls, =s5,6]1=6,

, = (117)

Uls, =5,,0]={x > b,y >¢c,, 2> p,s >e,t e},
thereafter

8P ={x—>b,y>c,z>p,5s e, el (118)
Here cycle repeating makes no sense, since all basic substitutions are terms, so that §® is
the minimal unifier of equation system (113). m

Since all equations forming the system are linear, the algorithm for its solution always
stops in a finite set of steps.

There is another algorithm for solution of linear equation system. It is of the same
“outer shell” (cycle before the fulfillment of condition (112)). However cycle body
contributes to successive solution of these equations so that for the suffix the next i-th
equation has unifier constructed from solution of (i-1) equation:

8, =Uls, =s/,6,1,
6, =Uls, =s,,9,1,

B B 10
i=U[Si=S;’5il]’ (119)

oY

gm =Uls, = s, gm—l]'
During the first repetition of outer cycle 6, there is the suffix of solvable equation system
&, during next repetitions it is unifier 6, obtained from the preceding one.

If while solving the system the construction of unifier of the next i-th equation
<s;=s/,6,_; > is impossible, the system is incompatible. If, during some repetition of the
cycle, 8, =8, then

gm :g() =U[s, :SI/""’Sm :S;756]~ (120)

Equation solving procedure is of immediate interest. It follows from the subsequent
Theorem 8 presented without proof, that all m! variants of ordering the equations,
forming kernel of the system (98) are equivalent in the sense that if U[s, =5]....,s,, =5,,,6]
exists, it will be built in all variants. If the system is incompatible, then similarly this fact
will also be traced in all variants.
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Theorem 8. If linear equation system <s$; = Syeees Sy =Spys 0 > i compatible, then

’
Uls, =$,...,8

w=5,0]1=Uls, =575, =5, ,6] (121)
for any sequence < Loy, >#< L..m> m

Apart from the suggested methods there is another method of solving linear
equation system based on reduction of system to one non-linear equation, and then it is
resolved according to Chapter 6.

We shall construct the CF grammar G ' given below based on the original
unambiguous acyclic CF grammar G =<V, 4, ¢, R>, which defines language L(G), system
(98) is solved on:

G' =<V U{E}, Aufag}, o, RU{ay— o #0500 }> (122)

in which the number of instances of non-terminal &, (axiom of the original grammar G) in
the right part of rule added to scheme R is equal to the number of equations in system (98),
i.e. m (therefore, the number of instance of “*” separator, added to the term alphabet V', is
m-1).
Then let us consider the following word equation on CF language L (G”)

<SSy ELRS, =S RS,ELksT 0> (123)
with unifier, if such exists, which obviously is the same as the unifier for the solvable
equation system; alternatively, the absence of unifier (123) is equivalent to incompatibility
of system. This equation is non-linear, since each variable can be included into its left and
right parts m >1 times. However, one may easily verify that the problem of constructing
non-linear equation unifiers of this type is algorithmically solvable, and the algorithm
from Chapter 6 provides its solution in a finite set of steps.

9. Non-linear Equation Systems

Non-linear equation system
<s, =s/,...,8, =s,,0 > (124)

allows for at least one non-linear equation kernel in which at least one of terms s, or S,

has more than one instance of at least one of the variables.

Since according to Theorem 5, the problem of constructing non-linear equation
unifier generally does not have an algorithmic solution, the problem of constructing the
unifier of non-linear equation system is also non-solvable. However, analysis suggests that
there is a subset of these systems family, which is of practical interest, since the problem is
solvable for it.

The following observation forms the basis of suggested algorithm for building
unifier of non-linear equation system. If under sequential solution of equations, forming

the system, according to (119) terms §; and/or S, in subsequent equation
<s=5,5 > (125)

i
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contain more than one variable input 7, but basic substitution (rule)
y—pBed,, (126)
is such that BV, and this condition holds for all variables of this type, then obviously

the equation (125) is in fact linear — if infg {s,[8,,],s/[6,,]} exists, then &, will contain
the same basic substitution ¥ — . In other words, (126) is equivalent to lack of variables
similar to ¥ in equation (125), since in terms of form s;[{y > B}] and s/[{y >B}] all ¥
instances are absent — their places are occupied by constant B (the string in the alphabet
V).

Therefore, if sequence (119) is formed not randomly, but in such a manner that by
the time of solution of subsequent equation all variables which make it non-linear have
already become “hidden” constants (see Chapter 6) obtained from solutions of preceding
equations, then under this approach the unifier of equation system can be built even if the
system contains non-linear equations.

Let us now consider the suggested algorithmic framework which provides
estimation of solvability of non-linear equation system.

Let us introduce recursive function ¥ from two arguments ¢ and & . The first is the
sequence of numbers of scanned and solved equations of system (124) which results in
unifier expressed by the latter. This sequence takes the form of the string ¢=j,/.../ j,,
where ji,...,j, are equation numbers and “/” is the separator. The result of ¥(4,9), where
A is the empty string, ¢ is the suffix of solved system, which corresponds to the initial
state of its solution (none of the equations is scanned, therefore obtained unifier is the

mentioned suffix), is the set O =14, ---.¢, }, in which i-th element is one of the possible
sequences of equation selection gq; = Jji/...]j., which contributes to the constructing the

unifier of the solved system. The set {j,...,/.} is denoted by g;, and Q denotes the set
which contains the so-called pseudo-linear equation where all variables included in
equation terms repeatedly are “hidden” constants. This set also contains linear equations
originally contained in the kernel of the solvable system. If ¢=A | then 7={J}.

The definition of function W takes the following form:

U ¥(q/i.ULs, =5/.81.if § # {L...m}
¥(g,8) =15 (127)
{9} otherwise.

According to this definition, the set of immediate subsequent steps is formed during each
subsequent step of calculation which corresponds to ¢ and &§. Each of these steps
corresponds to one of the remaining equations which is either linear or pseudo-linear. For
every equation with number i there are arguments of recursive call of function ¥. The
former is the input sequence ¢ with number 7 attached through the separator on the right,
and the latter takes the form of unifier of the equation < s, =sf,5~ >,

Therefore, the recursive process denoted by (127) provides complete enumeration of
all possible sequences of scanned equations of the system (124) by terminating the
sequences, in which the subsequent selected equation is neither linear, nor pseudo-linear,
or has the form of one or the other equation, but does not have a solution (unifier). The
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exhaustion of all equations is the common condition of recursion termination (the second
alternative (127) corresponding to ¢ ={l,...,m}). If the application of function ¥ to initial
arguments A and & results in termination of all recursion branches, then depending on
termination reasons it testifies that the system is incompatible (all “gaps” are resulted from
the lack of solution in selected linear/pseudo-linear equations), or the system does not
belong to the class of non-linear equation systems which can be solved by sequential
linearization. If W(A,0) results in non-empty set Q, then any element of this set
q=j./...]j, can be selected for application to the solved system of the following form
<8, =88, =5 ,0>, (128)
which is outlined in Chapter 8 in algorithm of sequential solution of linear equation
system by means of cycling (119). Moreover, cycle can start with unifier § ( i.e. the first
scanning of all equations already took place during ¢ constructing).
Example 14. Consider grammar G from Example 11 and the system consisting of
two equations
<p :xlxle=z:ylyls,
zicy /ey /s=pyixlylt, (129)
{x—=(B), y>(C),z—>(P),s > (E), 1 - (E)} >.
As we can see, the first equation is non-linear, therefore sequence 1/2 is impossible.
Equation 2 in sequence 2/1 is linear. Having solved it, we obtain:
gz{x—)cz,y—wz,z—>p1,s—><E>,t—><E>}. (130)
The first equation, with variable x which is twice included in its left part, and variable y
which is twice included in its right part, having obtained suffix § with terminal
substitutions x — ¢, and y = ¢, corresponding to x and y, becomes pseudo-linear. Having
solved it, we obtain
gz{x—>ez,y—>cz,z—>p1,s—>e1,t%<E>}, (131)
After another “run” of system (129) in sequence 2/1, we obtain unifier
5={x—>cz,y—>cz,z—>p1,s—>e1,t—>e]},
which is the solution of the system. m
The suggested method can be generalized when, after the solution of i—1 preceding

equations in i-th non-linear equation with multiple instances of variable 7 in one of the
terms, the unifier includes substitution

Y= Bed,, (132)
such that B8 contains non-terminals, but in alphabet V' the set of words generated from 8

in grammar G is finite. Since the problem of recognizing the finiteness of the set of words,
derived from non-terminal of CF grammar, has an algorithmical solution, the problem of
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recognizing the finiteness of the set V(7.6,,) is also solvable; the set can be built by the
means of direct generation. Furthermore the equation
<s,=s,0., > (133)
is equivalent to | V(¥,6..,) | equations of the following type
<s,=s), 6, -y > Bruly —u}>, (134)
where ueV(y,0,,).

Having fulfilled the discribed procedure with similar variables Yj---»¥; , which have

multiple instances in terms §; and s/, we obtain
r _
HIV(,,.0.)) (135)

pseudo-linear equations of form (130) (in assume that there are no other variables with
multiple instances in terms S; and s/ in equation (130)). The described algorithmic

framework can be successfully applied to such equations.
We will not go into peculiarities of the suggested class of equations. Let us turn our

attention to its applications.

10. Applications

The class of mathematical objects and algorithms associated with them suggested in
this article develop the approach to modelling data bases (DB) and knowledge bases (KB)
[13-19] designed by the author in 1979-1984 that make up the basis of Intelligent Software
Medias (ISM) Theory described in full in [11].

Within the framework of this approach, the data base in the moment of time ¢ is

defined as a set of strings (“facts”) W, and the metadata base (MDB) is in the form of
scheme D, of CF grammar G, =<V, 4, 0y, D, > Data base W, is correct if W; SL(G,). The
data base with incomplete information (IDB) is defined as set of incomplete (I-) facts
X, €SF(G,), so the presence of non-terminal @ in some I-fact X€ X; corresponds to the
incomplete information “as per . I-fact x” is more informative than the I-fact x, if
x =" x’ (in grammar G;). IDB X; is non-contradictory if it lacks two I-facts * and x’, one

of which is more informative than the other.
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Example 15. Assume we have metadata base D, which describes the following

structure of facts from the field of ecological monitoring of some territory:

<fact> — AREA < > AT <m0ment T> <conditi0n>

<condmon> — NORMAL

<condztzon> — SMOKED

(r) — (area code)

<area code> <number><number>

<moment T> <t>

(t) — (time) (136)
<t1me> <hours><minutes>

<hours> <number><number>

{
{

mznutes> <number><number>

<number> - 9.

The correct data base %, which accumulates messages from ecological sensors of

the monitored area may look the following way:
{AREA 12 AT 12.00 NORMAL,
AREA 16 AT 13.45 NORMAL,
AREA 12 AT 14.10 NORMAL,
AREA 31 AT 9.00 SMOKED}.

(137)

If the informational nucleus of the environmental monitoring system is data base
with incomplete information, X, in a certain moment ¢ may be the following:

{AREA 15 AT 12.00 (condition),
AREA 56 AT 13.45 NORMAL,
AREA 42 AT 18{minutesy NORMAL,
AREA (r) AT 18.40 SMOKED}.

(138)
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In this IDB the first I-fact states the absence of information about the condition of
area 15 at 12.00; the third I-fact contains the information that in some certain period of

time from 18.00 to 18.59 area 42 was normal; the fourth I-fact contains the information
that at 18.42 one of the monitored areas was smoke filled. Even so, IDB X, is non-
contradictory in the mentioned sense. If in the moment ¢ we have I-fact

x=AREA 42 AT 1840 SMOKED 1DB X,, =X, V{x} will be contradictory, because
AREA (r) AT 18.40 SMOKED =" AREA 12 AT 18.40 SMOKED | (139)

so the entered I-fact is more informative that the one in IDB. m
There are two queries protolanguage to the DB: sentential and termal.
In the first one, the query is SF x of the grammar G, and the answer 4, is a set of
facts derived from x:
A =W, N SF(G)={w|we W, &x =" w}. (140)
In termal protolanguage the query is sequence <s,0 > where s is term and & is

suffix in the terminology of this article. Even so the answer is a set of facts weW,, for
which the word equation in the CF language L(G,) <s=w,0> has the solution below:

4y =U (Dls=w.3]} (141)

wely

Applying to IDBs, the answer to the query y€ SF(G,) is set
A1 =1x|xe X; &3infg {x,y}} (142)
and the answer to the query <s,0 > is set
A =1x|xe X, &3U[y=s,6 U{y — x}1}, (143)
where the auxiliary variable 7 is not included in term s.

Example 16. The answer to the query x= AREA (r) AT (t) SMOKED to DB W, from
Example 15 (purpose of the query is selection of facts about the areas where ecological
sensors registered smoke) will be set

A,y ={AREA 31 AT 9.00 SMOKED} (144)

The answer to the query <s,6 >=<a SMOKED, {a — AREA (r) B (t)}> to the same
DB will be the same set.

The answer to the query <s,6 > to IDB X; from example 15 according to (142)-
(143) will be the set
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A, ={AREA 15 AT 12.00 (condition),
AREA (r) AT 18.40 SMOKED}. m (145)

Protolanguage serves as a basis for creating query languages (in a wider sense — data
manipulation languages) of particular data base management systems (DBMS).

As the protolanguage for knowledge representation the Post systems are used being
a “string-oriented” analog of Horn clauses whose practical appliance in creating
knowledge based systems and intelligent interfaces of the relational DBMS is well-known.

The knowledge base as generalization of data base is a pair <S,,D, >, where S, is a
set of productions of form <s, < ,...,5,;0 >, and $,,5,,..,8, are terms, & is the suffix,

moreover, {5,[6],...5,[6]} € SF(G,). Even so, the data base as a factual part of knowledge

data base is a subset of set S, which includes productions of form <s, <d >. While
operating the incomplete information in all productions s,[0]€ SF(G,)-V" is acceptable, i.e.

non-terminals present in SF s,[6].
The extensional of knowledge base <S,D> (index ¢ is omitted to simplify the
record) denoted by Ex(S,D), is a set of facts (strings) provable in Post system without

variables intentionally equivalent to this data base. Even so the production

0 =<5, ¢ $,,...5,,0 > is intentionally equivalent to a set of Post productions without
variables 0 in the sense that

6:U7{<s0[d]esl[d],..‘,sm[d]>} (146)
ded ’

where Post production is in angular brackets.
Example 17. Assume we have metadata base D; from example 15 where new rules

are additionally included:
(fact) — SENSOR (i) AT (moment T)— SMOKE
(fact) — SENSOR (i) AT AREA (r) (147)

<i> - <number><number>,

which determine the structure of facts about the ecological sensors indications and its
position in the controlled areas. In a set of productions S; of data base <S;,D; > we include

the unique production:
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<AREA r AT t SMOKED «

SENSOR i AT t—-SMOKE,

SENSOR i AT AREA r;

{r—><r>, (148)
t—><time>,

i— (i)} >.

The usage of symbols 7 and i for denotation of variables of production and non-
terminals of metadata bases do not bring any ambiguity because the variables have their
place in left parts, while non-terminals are located in the right parts. Besides, the record of
non-terminals requires using metalinguistic brackets. Meanwhile, the variable operating
area is the production where it was used, whereas non-terminal operating area are all KB
productions.

The presence of the facts about sensors and their indications in the data base
corresponds to the availability of the following productions in set S; :

<SENSOR 11 AT AREA 22« ,{Q}>,

<SENSOR 16 AT AREA 22« ,{D}>,

<SENSOR 18 AT AREA 35« ,{Q}>, (149)
<SENSOR 11 AT 15.00 — SMOKE « , {D} >,

<SENSOR 18 AT 16.00 — SMOKE « , {3} >.

We can easily see that according to (149) the KB extensional includes the following
two elements:

AREA 22 AT 15.00 SMOKED,

AREA 35 AT 16.00 SMOKED, (150)

and elements
SENSOR 11 AT AREA 22,
(151)

SENSOR 18 AT 16.00 — SMOKE,
that correspond to the productions from (149). m
The answer to the query <s,0 > is a set of elements of extensional we Ex(S,D),,

i.e. the facts derived from KB <s,0 >, for which equation <5=w,0 > has the solution:

4.,= U {Dls=wd]
o wEEx(S{D) } (152)
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So the answer to query <a SMOKED,{a—> AREA(r) AT ()}> to the KB from
example 17 will be the set of two elements (150).

As it can be seen, the string-oriented representation of information allows direct use
of natural language (NL) to operate DB and KB. If there is predicate (predicate-actant)
representation that form the core of relational data bases and their various derivatives, it
requires the creation and maintenance of rather difficult-to-use natural language interfaces
characterized by a limited subsets of the lexicon, syntax, semantics and pragmatics of NL
with its own knowledge representation models (KRM). The string-oriented representation
does not require substantiational time to create even polylanguage systems to
communicate with the DB and the KB due to the unified and easy-to-use KRM.

[11] gives different axiomatics of the inference of responses to queries to the KB,
including knowledge bases of the so-called procedural connection (extension), which
provides in a process of inference a call of “hard” (non-modifiable) programs (for example
DBMS), as well as a number of issues related to the need for well-formed and efficient
software/hardware implementation (including through the parallel inference) on very large
data and knowledge bases with regard to different network ISM infrastructures.

The key element of the described axiomatics is the so-called S-unification which is
the solution of equation <s=s,,6 UJ, > where <5,0> is query (initial or derived, i.e.
formed during the inference process), while s, and 0, is a head and a suffix of i-th
production of the KB; meanwhile, a set of variables that have their place in terms $ and s,
do not intersect.

The primary tool of reducting the inference computational complexity (including

access to data bases), i.e. complexity of mass solutions of equation like <s=w,0> and
<s=s5,,0 U6, >, are the so-called SF-trees. Non-terminal nodes of the SF-tree are

sentential forms of the CF grammar G;, the root is its axiom ¢, and leaves are the objects

which require direct solution of these equations (elements of the DB/IDB and the heads of

productions). The backbone and the effector feature of SF-tree which enables cutting off
its subtrees without their direct scanning, is condition y =* x’ that satisfies the node X
and each of its descendants x”. Therefore, when inf; {x,5{6]} does not exist (it means the

corresponding equation has no solutions), this condition is executed for any descendant of

the node X, which allows excluding from scanning all the subtree roots X .
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The development of the SF-trees are the so-called ASF -trees which exclude the
possibility of multiple duplication of the SF's symbols by means of storage in every node —
direct descendant — of only the so-called increment relative to its direct ancestor.

The so-called grammar approach to coding, which provides constructing codes on
stochastic CF languages and on this basis much more effective than conventional Huffman
codes constructed under the assumption on the admissibility of all words in the alphabet
V', is associated with the apparatus of inference optimization and data base management
developed in [11,18]. For all the proposed classes of codes, algorithms of block decoding
were developed based on the transformation of CF grammar encoded words to bilateral
type that provide an increase in decoding speed by K times if compared to the bit-
decoding, where K being the length of the block that can be selected based on the amount
of memory available for allocation of the decoding tables.

The basis for the practical application of the developed mathematical apparatus was
the so-called page data representation (notice that ‘“up-to-bottom”, “left-to-right”
linearized page is also string), which allowed, in particular, in 1986 implementation of the
so-called page DBMS on mainframe and personal computers, being in fact the first
network web-server, and in 1990 implementation of an intelligent software media that
provided the distributed intelligent processing of the streams of messages (pages) at the
rate of their income from geographically separated sensors and computer terminals in
accordance with the current state of KB, i.e. to create, in modern terminology, a
distributed multiagent system of the OLAP class (On-Line Analytic Processing) with a
unified web-interface. In this case, unlike in T. Berners-Lee paradigm [20, 21], for
creating and maintaining paged data bases (meaning web-sites in the modern sense) it did
not require a metalanguage like HTML (HyperText Markup Language). This greatly
simplified the process nowadays referred to as web-mastering making it available to any
user of network information resources organized in the form of harmonically associated
personal and public DB updated in real time by ISM in accordance with the current logic
of processing of incoming messages. This logic could, if necessary, evolve to adapt to
dynamic external conditions through rapid introduction of local changes in the distributed
network KB by knowledge engineers without the involvement of the ISM designers.

Thus, the development of versatile mathematical apparatus based on the universal
string-oriented representation of data, which goes back to the algorithmic approach in
information theory, enabled not only to compile correctly the earlier data model and

knowledge-based relational (predicate-actant) representation [8, 9, 22], but in a short
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period of time to create a practical and effective tools, while their counterparts began to
appear 8-10 years after the first page DBMSs and ISMs were actually put into operation.

Marked at the beginning of this century transition to the creation of network-centric
robotics [23-31] gives reason to develop the existing theoretical and practical groundwork
to create a new generation of distributed ISMs as the basis for formation system of
autonomous mobile networking groups (masses) of multisensory and multi-functional
robots. Elements of the developed apparatus can be effectively used to create on-board
intelligent robotic systems that provide problem solving in the localization of the observed
objects, their spatial and indicative clustering, classification, identification, and, on this
basis, continuous monitoring of the environment groups of robots. The limitedness of on-
board power margin of robots leads to minimization of the computational complexity of
these tasks that are traditionally related to the field of pattern recognition, i.e. developing
such algorithms for their solution that would ensure the minimum time function of on-
board computing and on this basis would maximize the periods while robots being in an
active state. As each of these tasks can be formalized in the form of an equation in the
words of the CF language, efficient and universal means of this optimization can be
mentioned SF (ASF)-trees; ideology and techniques of robotic applications will be
discussed in a separate publication.

Another promising direction of applying the described mathematical apparatus can
be modelling of genetic processes.

If we accept the hypothesis that the genome of a class of organisms is a CF-grammar

G =<V,4,0,,R> and the current state of an organism at moment ¢ is its sentential form

X,, then the process of life (development) of an organism is permanent generation

x, =" x,,; by replacing non-terminals o€ 4 (developable elements of an organism) on the
right parts of rules @ = € R containing both non-terminals and terminals. The organisms
x,€ V" in which non-terminals are absent have no opportunities for development, and they

cease to exist (die).

Regeneration (self-reproduction) of the elements is possible due to the presence of
cyclic rules of form @ — off in scheme R, while their alternative rules @ =¥ under certain
conditions can lead to termination of regeneration.

Each generator rule o — e R is characterized by a minimal amount of energy

intake AE(2 = ) of non-terminals @ required for the direct generation x} x> = x! f x7.
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Generation of new organisms is made by means of combination of two parent cells
X and ¥, with creation of cell
¥ =supg{x, X}, (153)
which carries all genetic information common for both parents, i.e. genetic properties that
are distinctive for both of them. Then it enables generation of cell
¥, =infg {x,, 7}, (154)
where each non-terminals @ which presents in SF »; and one of SF x; X s replaced by
strings B derived from @ in other SF in accordance with (52). As a result, the descendant
in the first part of non-terminal @ gets genetic information B possessed by only one
parent and not possessed by the other one. If the both parents have the same informativity

as per @, the descendant will have the same non-terminal @ .

In general, however, inf,{x,,x/} does not exist due to the fact that some non-
terminals @ ...o; that form a part of y, have various strings B, # f3/...., B, # B, arising from

@0 1in derivations y, =" x,, y, =" x,. In this situation J; can be formed through the
implementation of two operations:

1) replacement of non-terminals o such that y, =y y,, x,=x0x, x =x8x,
W25, =",y =" X, y, =" ¥, with B

2) replacement of non-terminals @ such that y,=y@y,, x,=x8x, X =x8"x),

BB, yw="x, n="x, y,=" x), y, =" x5, with one of the strings 5 or .

It is evident that the first operation is fully consistent with logic of constructing
inf, {x,x’}, whereas the second in the presence of “genetic selection” implements it in favor
of one parent.

Conclusions (creations) oy ="7 are encoded by means of DNA sequences
consisting of nucleotide bases. The kernel of coding is, apparently, bialternativity of
scheme R (each non-terminal o has two alternatives «— 8, — '€ R), which results

from the presence of two types of pairings of the mentioned bases (adenine-thymine and
cytosine-guanine) [32] in the DNA.

Artificial change of individual sections of these chains in living cells (in vivo) under
the influence of various factors explains the changes in the chains of rules that ensure the

creation and leads to the emergence and development of genetically modified organisms
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¥,, some of which may have different internal and external abnormalities due to non-

fulfillment of condition supg{x,x’} =" 7, (for that matter ¥, is a mutant that has features not

characteristic for any of the parents).

Despite the fact that the introduced formalization obviously has hypothetical and
descriptive nature, it is distinguished by its original settings from the methods of usage of
the grammars apparatus [32, 33] in genetic engineering, so it may result in its creative
application.

The constructive application of the results presented in this article may be found also
in social engineering, especially in its most demanded part — non-directive control of
societies [34].

A society in electoral situation may be presented in the form of CF grammar
G=<V,4,0,,R> where ¢, is “society” axiom, &, are individuals that form it,
V' ={v,,..,v,} — election variants, so

R={o, = v,,..0, =>v,,
(155)

o, = Vy,s 0, >V, },

m

i.e. in its initial state L(G)=V, and @; >V;€ R which correspond to j-th selection of
individuals of i-th variant. The purpose of the electoral headquarters supporting the i-th
variant (for example, i-th candidate for elective position) is to turn G into
G; =<V;, 4;,09,R; >, where L(G;)=1{v;,A}, just like before A is an empty string, and make it
with the help of non-directive methods which exclude the possibility of removing the rules
of scheme R. In the adopted formalization any headquarters uses two types of electoral
technologies corresponding to the derivation chains
V=20 3.2 5, (156)
and
1,200 A, (157)
Technology (156) — the “positive one” — forms the electorate idea that all positive
features that distinguish j-th candidate from the others are also possessed by i-th candidate.

Technology (157) — the “negative one” — forms the electorate idea that the choice of j-th
candidate is a dead-end, therefore, it is pointless. In this case, greater complexity

(informativity) of object v; compared to object V; (because of V;="v;) at the level of
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ordinary consciousness is interpreted as a big experience, knowledge and wisdom of i-th
candidate in comparison to j-th candidate. In general, due to (156) i-th candidate embodies
all the best features possessed the remaining candidates, and thanks to (157) it is
completely devoid of their defects.
The essence of the electoral process is to create a mass consciousness of society (it
means ultimately, consciousness of each individual), CF G; =<V}, 4;,,R; > such that
Vi={v;},

Al K I
4= 400 - | U U @hoU 59

j=1 ¢=1 gq=1
i
" 158
R, =RuU|U {v, —w}”,...,v;k’) -} |V (158)
j=
i
i @)
ulU {y —>17}1),...,17j 77— A}
Jj=1
j#i

Formation, as a rule, is performed by gradual, “soft” introduction of separate rules of
scheme R to the individual conscience, with each rule clearly not contrary to the moral
and psychological attitudes typical for different groups of society, therefore not rejected by
them. After this, in a relatively short period of time immediately preceded by the election
the initiation of “thinking process” is implemented, and voters, having applied the rules of
scheme R, embedded in their minds, by the voting time come to the “right” decision
L(G;)=1{v,,A}, where A is attributed to all candidates, except for i-th candidate.

Naturally, in general, there is a race of several election headquarters; each of them
attempts to implement this technology to their own advantage basing on the available
resources.

A more detailed discussion of this and other possible applications goes beyond the
scope of this article.

The author expresses his sincere appreciation to V.G. Tyminskiy
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