
1

Sheremet I.A.
Doctor of Engineering science,

Professor, member of the European
Academy of Natural Sciences e.V.

Grammatical codings

Special Edition:
Hannover Annual

Vol. 1, 2012

Printed by decision of European
Academy of Natural Sciences e.V.

Hannover, 2012

2

Printed by NG Verlag (Viatcheslav Demidov Inhaber)
Berlin
Tel.: 030/4442460
Fax: 030/44739165
E-mail: SlavaDemidov@t-online.de
Internet: www.ng-verlag.de

Sheremet I.A.
Doctor of Engineering science,
Professor, member of the European
Academy of Natural Sciences e.V.

Grammatical codings

Special Edition:
Hannover Annual

Vol. 1, 2012

Printed by decision of European
Academy of Natural Sciences e.V.

Hannover, 2012

Annotation

This work is devoted to reviewing of grammatical approach to coding, within the
framework of which the methods of construction of effective codes and
corresponding coding-decoding algorithms are being developed and applied not
to a set of all words in the initial alphabet, but to subsets of this set – to the
languages, specified by means of their finite representations – grammars. Essential
reduction of constructed codes redundancy and, accordingly, of their cost is ensured
as a result.

Three families of grammatical codes – alphabetic (static), automata (dynamic)
and structural – are considered. For each of these families algorithms of the
irredundant codes construction, coding of initial messages (words of formal
languages) and decoding of binary sequences are given. The methods of block
decoding, which ensure its essential acceleration, are described here.

The work is intended for specialists in the field of the information theory,
theoretical and applied computer science, databases, and for students and post-
graduate students of corresponding specialities.

Sheremet I.A., 2012

ISBN 978-3-942944-19-9

3

Introduction

1. Grammatical Interpretation of Coding

2. Codes, Decipherable Over Context-Free Languages

3. Construction of Codes,
 Effective Over Stochastic Context-Free Languages

4. Effective Grammatical
 and Generalized-Prefix Codes Interrelations

5. Block Decoding.

6. Optimization of Syntax Analysis of Coded Messages.

7. Parallel Syntax Analysis of Coded Messages.

Conclusion

Bibliography

5

6

6

14

21

23

28

32

37

38

Content

4

I.A. Sheremet Grammatical codings

5

Introduction

Irredundant codes of variable length, which ensure maximum degree of compression, are being

constructed, proceeding from aposteriory possibility of their application to any word in the primary

alphabet. At the same time, messages are transmitted through communication channels of computer

networks and are accumulated in the memory of their elements far not arbitrary, but satisfying to

certain semantic-syntactical restrictions, i.e. this messages are strictly formalized. Therefore, the

irredundant codes synthesized by known methods [2], with reference to the streams of messages

circulating in networks, possess, as a rule, considerable redundancy, though, from positions of coding

of arbitrary words in the primary alphabet, these codes, certainly, are optimal.

In the present monography, the so-called grammatical interpretation of coding, based on structure

description of coded messages by means of formal grammars, and construction of coding-decoding

procedures on the basis of generating and parsing of words of formal languages, is considered. Within

this interpretation synthesis of irredundant codes is performed by means of stochastic grammars,

formed from grammars, describing the structure of messages, adding the probability information [3] to

them.

Because of difficulties of general grammars practical application for specifying the languages, it is

possible without a damage to generality of results to be restricted by context-free grammars,

representing convenient and rather powerful tool for characterization of sets of the formalized

messages. Grammatic interpretation of coding allows to synthesize coding-decoding automata by

means of minimum correction of the parsers, which are being constructed according to grammars by

known methods [4]. In this connection two constituents of decoding process – localization of

information in sense [1] and decoding itself are integrated into the uniform process of syntax analysis

of the word in the binary alphabet (a message code), one of "by-effects" of which is consequent inflow

of symbols of the coded message on a decoder exit. Coding is performed similarly too.

The author offered the grammatical interpretation of coding in the early eighties. The first publication

on this subject in the academic press appeared in 1992 [5] (thus the paper had arrived in editorial

office of "Cybernetics" journal in 1987), and in the most expanded form the approach is written up in

the monography [6] (item 5.2).

 Special Edition: Hannover Annual Vol.1, 2012

6

1. Grammatical Interpretation of Coding

Let's consider the set of admissible messages, which are subject to coding, in the form of the language

L(G) = {w | a0

*

G
 w & w  V

*
}, where а0 and V are accordingly an axiom and terminal alphabet of

grammar G. Coding device represents the mapping АK from the set L(G) into a set of all words in the

alphabet {0,1}. Here the lower index K serves for a code designation, i.e. the function, which

consecutive application to a word w  L(G) ensures its coding, that is shaping of binary sequence

AK(w). Accordingly, the decoding device implements the inverse mapping of АK
-1

 from {0,1}
*
 to L(G).

In the general case, various definitions of K are possible, which specify, actually, different classes of

codings. Thus, irrespective of a concrete method of definition, the code K should satisfy to the

requirement of unambiguity of decoding:

(w  L(G)) AK

-1
 (AK(w)) = w, (1)

Following [7], the code K, satisfying to the specified requirement, let us name as decipherable over

the language L(G). The code K, decipherable over the language L(G) and supposing decoding AK(w)

by means of deterministic analysis without returns, we will name as decipherable with a finite delay

over the language L(G).

Let us notice that the code, decipherable with a finite delay over the language L, preserves this feature

over any subset L'  L. In the general case, the contrary is incorrect: the code, which is decipherable

over the language L, can be not as such, relating to the language L'  L.

Searching and examination of criteria of unambiguity conditions of decoding, at accomplishment of

which the codes are decipherable relating to definite languages, makes the main content of the

following item 2.

2. Codes, Decipherable Over Context-Free Languages

Let us define a code K and corresponding to it coding АK as follows:

K : V → {0,1}
*
, (2)

AK(w) = K (
1
i
v) ... K(

m
i
v),

where w =
1
iv ...

m
iv ,

j
iv  V. From expressions (2) it follows that the code of the word in the

primary alphabet V is the concatenation of symbols codes, entering this word. Thus, the symbols

codes in the course of coding remain constant, i.e. they do not depend on a context, enclosing a

symbol. It is accepted to name similar coding alphabetic [1].

Let us consider the problem of decoding uniqueness with reference to the given class.

Let we have a code K of the form (2) and unambiguous context-free grammar G = <V, VN , а0 , R>,

where а0 и V, as well as earlier, are an axiom and the terminal alphabet of grammar G, and VN and R –

accordingly, its non-terminal alphabet and a set of generating rules (scheme). We will define grammar

G
K
 = <V

K
 , VN

K
 , а0

K
 , R

K
> as follows:

I.A. Sheremet Grammatical codings

7

V
K
 = {0,1},

VN
K

 = VN  V, (3)

R
K
 = R  













Vv

xv }{ ,

а0
K
 = а0 ,

where x = K(v). For definiteness we suppose that V  {0,1} = Ø.
There is a lemma cited without proof, which correctness directly follows from a principle of G

K

grammar construction.

L e m m a 1. For any word w  L(G) there exists the only word

w'  L(G
K
) such, that w' = AK(w), and w

*

KG
 w' .

The existence of alphabetic codes undecipherable over to V*, but decipherable over L(G) is generally

possible. Namely, if the code K is such that АK(w0) = AK(w1) = … = AK(wq), where w0  L(G), and all

pairwise unequal w 1 , … , w q are not words L(G), so the requirement of decoding unambiguity of a

word w0 is fulfilled, though the code K over the language V* is undecipherable.

E x a m p l e 1. Let we have a unambiguous context-free grammar G = <V, VN , а0 , R>,

where V={a, b, c}, VN = {A, B}, а0 =A, and a set of generating rules includes the following rules:

A → aB,

B → cB,

B → b.

As seen, the grammar G generates the language

L(G)={ac
n
b | n  0}.

Alphabetic code K, such, that

K(a) = 0,

K(b) = 1,

K(c) = 0,

is decipherable over context-free language L(G), though relating to the language V
*
={a, b, c}

*
 this code

is undecipherable by reason of

K(a) = K(c).

In particular, two words – ab and cb – of language V
*

correspond to the word 01 of language {0,1}
*
, but

the only word ab of the language L(G), because cb  L(G).■

The general criteria of decipherability in the class of alphabetic codes is defined by the following

theorem.

T h e o r e m 1. Code K is decipherable over the language L(G), where G is unambiguous

context-free grammar, if and only if the grammar G
K
 is unambiguous.

P r o o f . If G
K
 is unambiguous, so for any w'  L(G

K
) there is a unique derivation tree and, hence,

the unique word w'  L(G
K
) such that w

*

KG
 w' . That is why we decipher the code K over the

language L(G), which was to be proved. Let now we decipher the code K over the language L(G), and

grammar G
K
 is ambiguous. The latter is equivalent to the existence of the word w'  L(G

K
), to which

corresponds not less than two various canonical derivation a0
K

*

KG
 w' . So far as G is unambiguous, so

for each word w  L(G) there is the only canonical inference а0
K

*

KG
 w and, hence, а0

K

*

KG
 w. From

 Special Edition: Hannover Annual Vol.1, 2012

8

this it follows that two different canonical derivation can take place only in that case when there are

two words w1 and w2 of the language L(G) such that w1
*

KG
 w' and w2

*

KG
 w'. It means that two various

words of the language L(G) have identical codes, that is the code K is undecipherable over L(G), that

contradicts to the theorem statement and invalidates the supposition about ambiguity of the grammar

G
K
. Hence, under a condition of the code K decipherability over the language L(G), the grammar G is

unambiguous, which was to be proved.■

However, because of unsolvability of the problem of unambiguity of context-free grammars

recognition [4], the criteria of the theorem 1 is not constructive. In this connection, the recognition

problem of alphabetic code decipherability over context-free (CF) language is also algorithmically

unsolvable [7]. We will be limited therefore to searching the criteria of alphabetic codes

decipherability with reference to such classes of context-free grammars, which, on the one hand, are

obviously unambiguous, and on the other – the problem of recognition of concrete grammar belonging

to the fixed class is algorithmically solvable. Such class is context-free grammars, supposing the

deterministic analysis without returns (DCF-grammars – deterministic context-free grammars).
Let us consider the criteria of alphabetic codes decipherability with reference to DCF-grammars.
Classical representative of DCF-grammars are LR(k)-grammars, where for any specified k it is

possible to define, whether the concrete grammar belongs to the class LR(k) [4]. It allows to formulate

simply enough the required criteria [7]: if grammar G and code K : V → {0, 1}* are so, that for the

specified k grammar G
K

is LR(k)-grammar, then the code K is decipherable over the language L(G).
Decoding is implemented on the basis of the determined bottom-up analysis of sentences in the

alphabet {0,1}. Therefore, the code K, satisfying to the mentioned statement, is decipherable with a

finite delay over the language L(G). The only addition to traditional algorithm of LR(k)-analyzer

consists in recording of grammar G
K
 non-terminals from V alphabet in an output string immediately

after their occurrence in a parser's stack [7]. Coding of words w  L(G) by means of alphabetic codes

does not differ from the usual.
It is obvious that the decipherability criteria, similar to mentioned above, is correct for any known

class of DCF-grammars, for example G(k), LL(k) etc.
In the course of alphabetic coding, the symbols codes remain constant. In [8] it is offered, instead of

compression of database element by means of Huffman code, constructed for V alphabet of symbols,

used in elements of DB, to compress fields of file entries by means of codes, constructed for subsets

of V, characteristic for these fields or their types (digital, letter and etc.). The effect is reached because

potencies of subsets, as a rule, notably less than | V |. Here that fact is most important that various code

combinations can correspond to the same symbol, which is taking place in values of different fields. It

puts the described method beyond the framework of alphabetic coding, for which static

correspondence of a code combination to a symbol, which does not vary depending on a context, is

characteristic. Drawing analogy between the method [8] and automatic coding in the sense of [1], it is

easy to notice that alphabetic coding can be generalized in such a way that codes of symbols

depending on analyzer DCF-language condition could vary. Because of similar generalization we

come to automata coding of DCF-languages. As for any such language there exists LR(1)-grammar

[4] generating it, it is enough to consider automata coding for a case of LR(1)-grammars.

Let we have LR(1)-grammar G and the mapping Ψ: S × V → {Y, N}, corresponding to function of

actions of LR(1)-analyzer of language L(G), where S is a set of the analyzer conditions, V – as before

is the primary (terminal) alphabet; Ψ(s, v) = N if the symbol v is inadmissible in s condition, and Ψ(s, v)

= Y in the other case (the analyzer action - transposition, convolution or admission). We will define the

code K as follows:

K: S × V → {0,1}
*
, (4)

at that the function K is defined only on pairs <s, v>, for which Ψ(s, v)=Y. The binary sequence К(s,

v) represents a symbol code v in a state of LR(1)-analyzer s. Automata coding of sentences of LR(1)-

I.A. Sheremet Grammatical codings

9

language L(G) is defined as follows:

AK(w) = К(
1
is

, 1
jv) ... K(

m
is

, m
jv), (5)

where w =
1
jv ...

m
jv , а

1
is ,...,

m
is is the sequence of underwent in the process of parsing the word w

conditions, in which the symbols
1
jv ...

m
jv are analyzed for the first time, accordingly. Here i1 = 0.

The definition (5) straightforwardly assigns an algorithm of automata coding of words w  L(G). In

its basis the algorithm of LR(1)-analyzer of language L(G) lies, in the course of which work, at the

moment of passage to the analysis of the recurrent symbol v in the condition of s, the code

combination K (s , v) is written in the output string.

For research of a problem of unambiguity of binary sequences decoding of the form A K (w) , let us

define | S | of so-called partial codes K(i): V(i) → {0,1}
*
, where V(i) = {v | Ψ(si, v) = Y} is a set of

symbols, admitted in the condition si, and for any v  Vi Ki(v) = K(si, v). Naturally, partial codes are

defined only for those conditions, for which V(i) ≠ Ø. A set of such conditions, named encoding

conditions, are designated lower through S'. The sufficient condition of context code decipherability

relating to LR(1)-language is defined by the following theorem.

T h e o r e m 2. The automata code K: S × V → {0,1}
*
 is decipherable over the language L(G),

where G is LR(1)-grammar, if all partial codes K(i): V(i) → {0,1}
*

, si  S ' , a r e d ec i ph er ab l e

o ve r t h e la ng ua g e V
*
.

P r o o f . Let we have an initial condition s0  S , when the parse's stack is empty, and there is

binary sequence z  {0,1}
*
 at the input of decoding device. As the code K(0) we decipher in relation to

V
*
, the first symbol

1
iv  V is univalently decoded. Thus K(0)(

1
iv) = z1 , where z1 is prefix z. As L(G) is

LR(1)-language, the presence of
1
jv symbol is enough to define univalently the new state of

2
is , in

which the analysis of the next symbol of a string of the alphabet V is necessary. Let now we have

some random state of
2

is , and at the input of decoding device we have the rest part of z. While

reasoning analogous, by induction, we come to the conclusion that whatever state was the LR(1)-

analyzer, the recurrent symbol
k

jv V and the state of
1k

is  S are defined univalently. Thus, as for

any i К i (v)=K (si, v), the result of decoding of binary sequence A K (w) is the word w  L(G), which

was to be proved.■

The technique of the theorem 2 proof, in essence, defines algorithm of decoding with reference to the

automata codes, satisfying to the formulated criterion of decipherability. The key feature of this

algorithm is that on every step of LR(1)-analyzer’s work, when the analysis of the recurrent symbol

k
iv  V is necessary, the decoding of prefix of the rest part of input binary sequence is performed with

the help of the code
)(

k
i

K :
)(

k
i

V → {0,1}
*
 , where

k
is is the analyzer’s current condition.

Owing to existence of the described algorithm, the automata codes, satisfying to the statement of

theorem 2, are decipherable with a finite delay over the language L(G).

E x a m p l e 2. We will illustrate the decoding logic in a class of automata codes with reference

to the automata language L, described by a finite automata represented in fig. 1.

 Special Edition: Hannover Annual Vol.1, 2012

10

Fig. 1. Finite automata, describing the language L,

the words of which are coded by automata code K

The following decipherable over the language L automata code corresponds to this automata:

State

s

Symbol

v

Code

K(s, v)

s0
a 0

b 1

s1
b 0

c 1

s2
b 0

d 1

s3

a 0

c 10

d 11

In a functional notation:

K(s0, a) = 0, K(s0, b) = 1,

K(s1, b) = 0, K(s1, c) = 1,

K(s2, b) = 0, K(s2, d) = 1,

K(s3, a) = 0, K(s3, c) = 10, K(s3, d) = 11. ■

Both considered classes of codings are based on forming of codes of words

w  L(G) in the course of their symbol-by-symbol parsing. We will notice that each such word is

univalently defined by its derivation tree in the grammar G. This allows to code their derivation trees

instead of words. Because the derivation tree of the formalized message from the substantial point of

view is the representation of its syntactic construction (structure), this kind of coding is called

structural.

Let us pass to formal description of structural codes from the point of view of coding theory.

Let us put in correspondence to generating rules of unambiguous grammar G binary code

combinations, i.e. define the function

K: R → {0,1}
*
. (6)

Let

x0  
),(

0

0 irk
 x1  

),(
1

1 irk

 …   
),(

1

1 nin
rk

 xn (7)

c

d

c

b a

b
b

a

s3 s0

s1

s2

s4

I.A. Sheremet Grammatical codings

11

is the derivation of word w in grammar G, where x0 = a0, xn = w, and each sentential form

х j  (V  VN)
*
 (j = 1, …, п) is obtained from sentential form х j -1 by using of a generating rule

j
i

r  R to kj (to the left) nonterminal SF х j -1 (it is supposed that the mentioned nonterminal coincides

with the left part of a rule).

Two variants of the structural codings, corresponding to the fixed or variable order of the world

derivation tree parsing, are possible.

The fixed order is defined by some prescribed function D: (V  VN)
*
 → N, where N is a set of

positive integral numbers. This function puts in correspondence to each string in the alphabet V  VN

the sequential number of one of non-terminals, entering it (at their indexing in string from left to

right), which then is chosen for application a generating rule to it, continuing the conclusion.

In this connection (7) is written down in the form

x0  
))((

0
 ,

0 irxD
 x1  

))((
1

 ,
1 irxD

 …   
))((

1
 ,

1 nin
rxD

 xn (8)

In particular, having defined D(x) = 1 for any х, we will get canonical parsing, and having defined

D(x) = Nx , where Nx is the number of non-terminals in the string х, is right-hand top-down parsing,

and etc. We will lay emphasis that, while speaking of the sequential number of a nonterminals in a

string, we mean “nonterminal-position” (for example, at D(ааAbАВС) = 3, the third nonterminal is В,

but not С).

E x a m p l e 3. Let us consider a unambiguous context-free grammar G = <V, VN, а0, R> from an

example 2 and the function K: R = {0,1}
*
 such that

[r1] K(A → aB) = 0,

[r2] K(B → cB) = 0,

[r3] K(B → b) = 1.

In this connection the word acb  L(G) can be generated as a result of the following derivation:

A  
)1,1(

 aB  
)2,1(

 acB  
)3,1(

 acb. ■

The structural code with the fixed order of parsing of derivation trees of the encoded words (for

brevity SCF) we will name the pair <K, D>, which defines the coding of a word w with the conclusion

(8) as follows:

AK,D(w) = K(
1
ir) … K(

1n
ir). (9)

From (9) it follows that word coding of w  L(G) by the SCF <K, D> is reduced to parsing of

derivation tree w, prescribed by function D, on each j step of which the binary line K(
1
i

r) is written to

the right of the earlier received part of this word code.

E x a m p l e 4. Let us consider a unambiguous context-free grammar G and a function K from an

example 3. We will define a structural code with the fixed order of parsing of derivation trees of

words in the form of a pair <K, D>, where D(x) = 1 for any х  (V  VN)
*
 – VN. Then the code of the

word acb  L(G) will be AK,D(acb) = K(r1) ∙ K(r2) ∙ K(r3) = 001.■

With a variable order of parsing, the decision about the number of non-terminal, to which the rule

j
ir is applied, it is applied directly after the generation of SF

j
ix ; so the sequence of numbers <k0, k1,

…, kn-1> should be known to the decoder, and for this purpose in its turn, it should be coded and

included in a code of word. Let the numbers <k0, …, kn-1> be coded by the code Е: N → {0,1}
*
.

 Special Edition: Hannover Annual Vol.1, 2012

12

The structural code with a variable order of parsing of derivation trees of words (for brevity

SCV) we will name the pair <K, E>, which defines coding of the word w with the derivation (7) as

follows:

AK,E(w) = E(k0)K(
0
ir) … E(kn-1)K(

1n
ir) (10)

As seen, coding of the word w  L(G) by <K, E> consists in fulfillment of semisteps of the number kj

coding of recurrent non-terminal, chosen for continuation of the derivation and coding of the

generating rule
 j

ir , which determines an alternative of this non-terminal. Both code combinations are

written to the right of the formed on previous steps part of the code of w.

E x a m p l e 5. Let us consider the unambiguous context-free grammar G of example 3. We will

define that numbers of non-terminals (non-terminal-positions) in sentential forms, generated by

derivation, are coded by two-bit numbers (thus a supposition is used that the greatest value of the

number of non-terminal-position in the course of coding is 3, or in binary notation 11). Then the word

code acb  L(G) will be the sequence

AK,E(acb) = 01 ∙ K(A → aB) ∙ 01 ∙ K(B → cB) ∙ 01 ∙ K(B → b) = 010010011.■

The form SCV (structural code with variable order), which corresponds to bialternative grammars, is

more convenient for practical applications. Thus a derivation tree of the word w  L(G) is univalently

defined by sequence <k0, b0, k1, b1, ..., kn-1, bn-l>, where kj  N, bj  {0,1}. Transferring bj to signs of

numbers kj (0 corresponds to plus, 1 corresponds to minus) and designating the numbers received by

such a way through kj', we will receive the sequence <k0', ..., kn-1' >, also univalently defining a

derivation tree of w. As a result, SCV is reduced, in essence, to forming of integral numbers

sequences.

E x a m p l e 6. The sequence of integral numbers coding a derivation tree of a word acb  L(G)

from an example 5, looks like <1,1,-1> (the last integral number is negative because K(B → b) = 1). ■

It is necessary to notice that in general case the grammar G can be ambiguous due to the word w 

L(G) can have several codes by number of derivation trees w in the grammar G. That is why the

structural coding in its any version represents many-valued mapping from L(G) in {0,1} , that is the

function AK : L(G) → 2
{0,1}*

 .

For simplicity, we will consider lower only unambiguous grammars, what from the practical point of

view is not at all essential restriction.

Let we have function K: R → {0,1}
*
 and the grammar G = <V, VN , a0, R>. Let us define the grammar

G
СК

 = <V
СК

, VN
СК

, a0
СК

 , R
СК

> as follows:

V
СК

 ={0,1},

VN
СК

 = V  VN , (11)

R
СК

 = 

















Ra

za


}{  












Vv

v }{

a0
СК

 = a0,

where z = K(a), Δ – empty string and, as everywhere before V  {0,1} = Ø. Besides, we will fix

a canonical order of derivation trees parsing. The decipherability criteria of structural codes with this

parsing order is defined by the following theorem, which is similar on sense to the theorem 1.

T h e o r e m 3. SCF <К, D>, where K: R → {0,1}
*
 a n d ( x  (V  VN)

*
– V

*
) D(х) = 1,

is decipherable over the language L(G), where G is context-free grammar, if the

grammar G
СК

 is unambiguous.

P r o o f . On account of theorem for each word w'  L(G
CK

) there exists the only one canonical

derivation а0
CK

*

CKG
 w' and, in such a way, the only one sentential form x = y1

1
iv у2 . . . yq

j
iv yq +1 ,

I.A. Sheremet Grammatical codings

13

where
j

iv  V , у j  {0,1}
*
. Thus w'= y1y2 … yqyq +1 . From here i t follows the existence of

the only one word w =
1
iv …

q
iv such that w' = AK(w) and, by this means, the code <К, D>

decipherable over L(G) .■

As it is easy to see, the statement of the theorem 3 is correct for any SCF and SCV.

As well as in case of alphabetic codes, the universal criteria of structural codes decipherability over

context-free languages is non-constructive because of algorithmic indecidability of problem of

context-free grammars unambiguity recognition. That is why it is necessary to find some sufficient

condition of decipherability for practical applications.

Let

R = {a0 → 
0

1 , …, a0 →
0

0n , …

… ai →
i

1 , …, ai → 
i

n0
, …, … (12)

… am → 
m

1 , …, am → 
m

nm
}.

For each group of generating rules R(i) = {a → 
i

1 , …, a → 
i

ni
} with an identical left part ai we will

define a partial code K(i): R(i) → {0,1}
*
 in such a manner that K(i)(r) = K(r) for any r  R(i).

T h e o r e m 4. SCF <К, D>, where К: R → {0,1}
*
 and ( x  (V  VN)

*
– V

*
) D(х) =

1 , is decipherable over the language L(G), where G is context-free grammar, if all

codes K(i): R(i) → {0,1}
*
 (i = 0, …, m) are decipherable over the language R.

P r o o f . Let us show that on condition of partial codes K(i) decipherability over R, the grammar

G
СК

 is LL(k)-grammar. We will remind that the context-free grammar belongs to the class LL(k), if

for any sentential form wax, where w  V
*
, a  VN, х  (V  VN)

*
, and any word w y1y2 ,

where y1  V
k
, у2  V

*
, analyzed from top to down string y1 with the length of k symbols,

unambiguously defines an alternative of non-terminal а, which should be applied to analysis

continuation.

In grammar G
СК

 the rules v → Δ have the only one alternative, that allows us to limit reviewing

groups of rules

R(i)
СК

 = {ai → z
i
1 

i

1 , …, ai → z
i
ni


i

ni
} (i = 0, ..., m). (13)

Let ai is non-terminal, which alternative should be chosen for continuation of top-down parsing. Set

by a theorem statement, the decipherability of code K relative to V defines the possibility of univalent

decoding of "symbol" of "alphabet" R, that is from positions of syntax analysis, a univalent choice of

concrete alternative ai → z
i
j 

i

j . Actually the length of a prefix of not decoded part of entering binary

sequence w', the knowledge of which is enough for definition of demanded alternative, is the value l =

max{ | z
i
1 | , ..., | z

i

i
n | }. For the whole grammar G

СК
 the value of minimum prefix length, sufficient

for the determined analysis, is the value k = max {l0, …, lm}. Hence, the string of bits of length k,
with which not analyzed part of entering word w' begins, univalently defines an alternative of any

non-terminal, necessary for the analysis continuation. Hence, according to definition given above,

G
СК

 is LL(k)-grammar. By reason of the fact that any LL(k)- grammar is univalent, G
СК

 is a

univalent grammar and, as it follows from theorem 3, the code <K, D> is decipherable over the

language L(G).■

As well as earlier, the statement of the given theorem is easily generalized on any SCF and SCV. As a

basis of decoding algorithm there can be put any (not necessarily top-down) algorithm of the context-

free languages words parsing, added with the operations, storing of a derivation tree in memory of the

decoding device of the analyzed binary sequence. After construction of the mentioned tree all terminal

nodes with symbols 0,1 and Δ and all edges, leading to these nodes, are removed from it. It is easy to

 Special Edition: Hannover Annual Vol.1, 2012

14

see that the sequence of the alphabet V symbols , generated as a result of left-to-right parsing of

terminal nodes of the received tree, represents the coded word of language L(G).

E x a m p l e 7. As seen, SCF <K, D> , where the function K is defined in example 3,

and D(x) = 1 for any sententional form x of context-free grammar G from this example,

is decipherable over the language L(G) , as far as the codes

K(1)(A → aB) = 0,

K(2)(B → cB) = 0, K(2)(B → b) = 1.

are decipherable over the language R.■

Owing to existence of algorithm of the determined parsing of words AK(w) on the basis of LL(k)-

analyzer, any structural code <K, D>, decipherable over the language L(G), is decipherable with a

finite delay over L(G).

3. Construction of Codes, Effective Over the Stochastic

Context-Free Languages

Let us use the representation of a set of coded messages in the form of stochastic language (in sense of

[3])

L(Gp) = {<w,q> | a0

*

G
 w & w  V

*
 & q = p(w)}, (14)

where Gp is stochastic context-free grammar, describing this language, а0 is its axiom, and p(w) 

[0,1] is the probability of the word w derivation in the mentioned grammar. Without limiting the

generality, let us assume that Gp is correct, that is


)(GLw

 p(w) =1, (15)

where L(G) is characteristic language of stochastic language L(Gp) , an d G is characteristic

grammar:

L(G) = {w | a0

*

G
 w & w  V

*
} = {w | (q)<w, q>  L(Gp)}. (16)

If G is unambiguous, the value p(w) is equal to product of probabilities of application of the

generating rules, used in the derivation a0

*

G
 w . Within the framework the considered application

р (w) , from the conceptual point of view, represents the probability of message w incoming to the

coding device input.

Integral efficiency index of messages coding is the average time T0 , spent on transmission of the

message from a source to recipient, which is defined by the following way:

T0 = 

)(GLw

 p(w) ∙ T(w), (17)

where T (w) for a case of an ideal data transmission channel is expressed in the form of a sum

T(w) = tc ∙ | w | + to ∙ | AK(w) | + td ∙ | AK(w) |. (18)

I.A. Sheremet Grammatical codings

15

In (18) expression tc represents an average time, spent on coding of one symbol of the message, but

to and td represent an average time, which is being spent accordingly on transmission and decoding of

one bit of the message code. While to is the characteristics of channel terminating equipment, tc and td

at the specified effectiveness of coding and decoding means are completely defined by peculiarities of

a class of codes to which the applied code K belongs.

Through | w |
*
 we will designate mathematical expectation of length of the language L(Gp) word, and

through | AK(w) |
*
 – mathematical expectation of length of this word code:

| w |
*
 = 

)(GLw

 p(w) ∙ | w |, (19)

| AK(w) |
*
 = 

)(GLw

 p(w) ∙ | AK(w) | . (20)

On account of (18)-(20), we will write (17) as follows:

T0 = tc ∙ | w |

*
 + (to + td) ∙ | w |

*
 ∙ C(Gp , K), (21)

where

C(Gp , K) =
*

*
)(

w

wKA
 . (22)

The value C(Gp , K) represents an average number of bits, spent on coding of one symbol of a word

of the language L(G) by means of code K, and with account of existing terminology of coding theory

[1] it is called hereafter as cost of the code K over the stochastic language L(Gp). Thereafter

everywhere, where it does not lead to misunderstanding, we will name C(Gp ,K) for brevity simply

the cost of code K.

Class of codes over stochastic language L(Gp) we will name any of the following codes assemblage,

defined in item 2:

– alphabetic codes K: V → {0,1}
*
;

– automata codes K: S × V → {0,1}
*
;

– structural codes with the fixed order of parsing of derivation trees of messages <K, D>, where K:

R → {0,1}
*
 , D: V  VN) → N, with the same D;

– structural codes with a variable order of parsing of derivation trees of messages <К, D>, where K:

R → {0,1}
*
, with the same E.

Thus, classes of automata codes are admissible only in a case when G is LR(l)-grammar.

Code K0, belonging to some class of codes over L(Gp) and decipherable with a final delay over the

language L(G), we will name nonredundant over stochastic language L(Gp), if for any other code

K, decipherable with a final delay over the language L(G), of the same class

С(Gp , К) ≥ С(Gp , K0). (23)

Let us remind that in the theory of coding the cost of code K: V → {0,1}
*
, corresponding to

distribution p: V → {0,1} of probabilities of occurrence of the alphabet V symbols in messages being

coded and designated hereafter through Ср(K), is defined as mathematical expectation of length of a

code combination:

Ср(K) = 
Vv

 p(v) ∙ | K(v) | . (24)

 Special Edition: Hannover Annual Vol.1, 2012

16

The least cost in sense (24) possess codes, which are synthesized by Huffman method [2].

Let p :V → {0,1}

is distribution of probabilities of symbols v  V occurrence in words of the

language L(Gp), and K
H
: V → {0,1}

*
 is Huffman code, corresponding to this distribution. Code K,

decipherable with a finite delay over the language L(G), we will name effective over stochastic

language L(Gp), if

С(Gp, K) ≥ Сp(K
H

). (25)

Let us pass directly to consideration of construction methods of codes, effective over stochastic

context-free languages. We will begin with the construction of effective alphabetic codes of a

form K: V → {0,1}
*
.

Let we have Huffman code K
Н

: V → {0,1}
*
, constructed on probabilities distribution p : V → {0,1},

corresponding to the language L(Gp). The cost of this code
p

C (K
Н

) can be accepted as an upper

bound of costs of required alphabetic codes, effective over L(Gp). The presence of such bound allows

to use the following algorithm for construction of irredundant code.

Let be given the number k and for each ensemble of code combinations lengths l1, …, ln, where n = |

V | , such that

)(

1

vp
vi

m

i




 ∙ li <
p

C (K
Н

) , (26)

we search through all possible codes K: V → {0,1}
*
 such that | K(v i) | = l i (i=1, …, n). For

each of these codes we define, whether the grammar G
K

 is LR(k)-grammar. As a result it

would be found a code K0, possessing the least cost of all codes, which satisfy to criteria of

decipherability [7] for the preset k.

It is clear that, because of Ср(К
H

) assignment and non-negativeness of li the number of lengths

gatherings of code combinations is finite. For this reason, and also owing to algorithmic decidability

of recognition of grammars membership to class LR(k) [4], code will be found for a finite number of

steps N. However, computational complexity of the described algorithm is extremely high and is

estimated by the value

O(N) = O(NK) ∙ 


1

1 0

m

l

… 


n

n

m

l 0

 2
)

1

(


n

i
il , (27)

where O(NK) is computational complexity of check of grammar G
K

 membership to class LR(k), т1 ,

..., тn are maximum values of code combinations lengths (m i = [Ср(K
H
) / p (vi)]),2

li
 is the number

of various code combinations of the length li.

By virtue of the fact that synthesis of irredundant alphabetic codes by a method of simple searching is

generally almost impossible, we will be limited to reviewing this problem for a case of stochastic

LR(1)-grammars.

Let we have LR(1)-grammar G and corresponding to it a set of coding states of S' and alphabets V(i),

si.  S', specified in item 2. For every v  V we will construct a set S(v)  S' of states, in which this

symbol can be coded:

S(v) = {s i  S' & v  V(i) } . (28)

I.A. Sheremet Grammatical codings

17

T h e o r e m 5. Let V = V(1)  ...  V(t), where 1≤ t ≤ | V |, a V(k)  V is a set of symbols,

to which the same combination of code K: V → {0,1}
*
, corresponds, having the following

properties:

1) for any vi
k
 и vj

k
, belonging to the set V(k), the condition

)()(v
S

v
S k

j

k

i


 = Ø is fulfilled;

2) the code K': { v 1
1
, . . . , v1

t
} → {0,1}

*
 is such that for all k = 1, …, t K(v1

k
) = … = K(vn

k
), nk = |

V(k)|, is decipherable with finite delay over the language V
*
.

Then the code K is deciphered over the LR(1)-language L(G).

P r o o f . We will consider the process of decoding in the form of an aggregation of two sub-

processes: decoding of the prefix of the remaining part of entering binary sequence and handling of

the received symbol v  V according to algorithm of LR(1)-analyzer of language L(G). Let, as a result

of performance of several steps, the analyzer is in a state s  S in which the analysis of a following

symbol is necessary. As the code K ' is deciphered with a finite delay over the language V
*
, as a result

of prefix decoding the set V(k)  V (k = 1, … , q) , will be uniquely defined, one of which elements

is decoded. As for any two symbols V(k) sets of states in which they are admissible, are not

intersected, the state s can belong to only one of these sets. This allows to specify univalently the code

of what symbol v  V(k) is the decoded prefix. As the cited verbal proofs are correct for any state of s

 S, the code K, satisfying to a theorem statement, is decoded over LR(1)-language of L (G) .■

The criteria of the proved theorem is constructive. There is the elementary algorithm of

decipherability recognition, which consists of looking up for each pair of symbols such that K(vi) =

K(vj), of i and j table columns of actions of LR(1)-analyzer of the language L(G).

The existence of at least one line with not empties i and j elements testifies of the code

indecipherability.

E x a m p l e 8. Let we have the following simplified table of LR(1)- analyzer of some LR(1)-

language L(G) with the terminal alphabet {a, b, c}, in which the symbol "+" designates an

admissibility of read out symbol of an analyzed line in corresponding state of LR(1)-analyzer:

S a b c

s0 + +

s1 + +

s2 + +

s3 +

Then sets of states of LR(1)-analyzer, in which symbols a, b, c, are admitted, are like that:

S(a) = {s0, s1},

S(b) = {s1, s2},

S(c) = {s0, s2, s3}.

Let thus such alphabetic code K takes place, that K(a)=0, K(b)=0, K(c)=1. As K(a)=K(b)=0, а S(a)

 S(b) = {s1} {}, code K is indecipherable over the language L(G).

At the same time, in case we have LR(1)-language L(G), the table LR(1)- analyzer of which looks

like

S a b c

s0 + +

s1 +

s2 + +

s3 +

 Special Edition: Hannover Annual Vol.1, 2012

18

The alphabetic code K is decipherable over the language L(G), as

S(a) = {s0, s1},

S(b) = {s2, s3}

and S(a)  S(b) = {}.■

However, as it is easy to see, for construction of an irredundant code of the form К: V → {0,1}
*
 on

the basis of criterion of the theorem 5 the sorting of all possible partitions of V into non-overlapping

sets is necessary. The amount of similar partitions of N(V) is defined by the following expression

known from [9]:

N(V) = 


0

1

! i i

i

e

n

 = 


n

i

in

0

),( , (29)

where n = | V |, а σ(n, i) are the second kind Stirling numbers. For practical V the value of N(V) is

inadmissible high, which excludes the possibility of code synthesis by a simple sorting of partitions.

In this connection, we will consider the offered method of synthesis, which possesses comprehensible

computational complexity and basically followes the methodology of similar problems solution,

developed in the theory anti-prefixability [10-12].

Let us construct a graph Г  V × V of left-context distinction of the alphabet symbols of V. Two

nodes of this graph vi and vj are joined by an edge in that and only in that case, if there is the state of

LR(1)-analyzer of the language L(G), in which both symbols can be coded:

Г = {<vi, vj> |)()(v
S

v
S

ji

 ≠ Ø}. (30)

We will colour the nodes of the graph Г with the minimum number of paints, that is we will construct

the function π: V → {1, χ(Г)}, where χ(Г) is chromatic number of this graph. As nodes of Г are

correctly colored, then for any vi, vj, connected by the edge, the statement π(vi) ≠ π(vj) is fulfilled.

Because of this, symbols of the alphabet V to which the same colour correspond, cannot be coded in

neither one state s  S. Thereby we have received a partition on minimum number of subsets in the

sense of a condition of the theorem 5. The further reduction of this number will lead to condition

violation. We will exclude all isolated nodes from the received graph. Each of them corresponds to the

symbol v  V, coded in such states in which any other symbol is not coded. Empty code combinations

correspond to all such symbols. We will notice incidentally that the amount of the isolated nodes does

not influence on the chromatic number of graph Г and, further, on the cost of a synthesized code.

E x a m p l e 9. Let we have the following simplified table of LR(1)-analyzer operations of some

LR(1)-language L(G) with the terminal alphabet {a, b, c, d, e}:

S a b c d e

s0 + +

s1 + + +

s2 + +

s3 + + +

s4 +

s5 + +

s6 + +

s7 + +

The graph Г  V × V of left-context distinction of alphabet V symbols, corresponding to this table, has

the following form:

I.A. Sheremet Grammatical codings

19

Fig.2. The graph of left-context distinction

The following correct node coloring can correspond to the given graph:

π(a)=1, π(b)=1, π(c)=2, π(d)=3, π(e)=2.

In its turn, the following code K can correspond to the given coloring. This code is decipherable over

the language L(G):

K(a)=0, K(b)=0, K(c)=1, K(d)=01, K(e)=1.■

Let us construct Huffman code of the form K': {1, …, χ(Г)}→{0,1}
*
, corresponding to the

probabilities distribution of р': {1, …, χ(Г)}→[0,1].

In the general case some variants of distribution р' are possible owing to feasibility of some

nonisomorphic ways of coloring. From all Huffman codes, corresponding to different variants of

distribution р' we will choose the one, which has the minimum cost. This K'code univalently defines

the required code K0: V → {0,1}
*
:

(i  {1, ..., χ(Г)}) (v  V(i)) (| V(i) | > 1 =>

=> K0(v) = K'(v) & (| V(i) | = 1 => K0(v) = ), (31)

where  is an empty word.

T h e o r e m 6. Costs of codes К and К' are equal.

P r o o f . Probabilities distribution of p : V → [0,1] and р': {1, …, χ(Г)} → [0,1] are connected

by an obvious relation:

.

)(

)()(' 




iVv

vpip (32)

Let us record the expression for code cost K0 in the form of [1]:

)(

)(

)(

)(

1

)()()(000 vK

iVv

vp

Г

i

vK

Vv

vpKСp 







 


. (33)

By virtue of the fact that according to (31) for all v  V(i) K0(v)=K'(i), the last expression is

converted to the following form:

)('

)(

1

)(')()('

)(

)(0 iK

Г

i

ip

Vv

vpiK

Г

Vv

KСp 
























 


. (34)

The last by definition is Сp(K'), which was to be proved. ■

a

b

c

d e

 Special Edition: Hannover Annual Vol.1, 2012

20

The distribution p : V → [0,1], necessary for synthesis of an irredundant code, can be received either

empirically, or (in the absence of such possibility) directly from grammar Gp .

In the last case for calculation of probability p (v) it is enough to present it in the form of relation of

mathematical expectation of number of entrances of the symbol v  V in the word w  L(G) to

mathematical expectation of this word |w|ср length . The specified values can be received, proceeding

from the following base relations, known from [13]. According to [13], mathematical expectation of

the length of the word х, derived from nonterminal аi  VN in correlated stochastic grammar Gр for

arbitrary number of derivation steps, represents the value i of vector component

Y=((E–Q×С)

-1
×W)×I. (35)

Here E is matrix of dimension | VN | × | VN |, such that lij = 1; Q is matrix of dimension | VN | × | R | ,

where qij is the probability of the j rule application from R at generation from nonterminal аi  V (for

rules of the form a0  ik
p

β
i
k qij=pik, for all others qij=0); W is matrix of dimension | VN | × | V |,

where wij is mathematical expectation of number of entrances of a symbol vj  V in the word x'  V
*
,

derived from аi; С is matrix of dimension | R | lines and | VN | of columns, where сij is the number of

non-terminal entrances ai  VN into the right part of i rule from R; I is vector of dimension | VN | ,

the values of all components of which are 1.

Matrix W is calculated as scalar product Q × Т, where Т is matrix of dimension | R | × | V|, where tij

is the number of entrances of symbol vj  V in the right part of i rule of R.

By this means, | w |ср is the value of the first component of vector Y, and mathematical expectation of

number of entrances of symbol vi  V in the word w  L(G) is (1, i) element of matrix W.

That is why

y

w
p

ij

iv
1

)( . (36)

Let us shortly discuss the peculiarities of coding-decoding by means of irredundant codes of the given

class. Coding of words w  L(G) with the help of K0 differs by nothing from the usual. At the heart

of decoding algorithm lies the algorithm of LR(1)-analyzer of the language L(G), in which

additionally operations of colour decoding i  {1, …, χ(Г)} and subsequent definition according to

current condition s  S of a single admissible symbol of a set of V(i) are included. The specified

operations are fulfilled on reaching each state, in which the following symbol of a coded word is

analyzed for the first time.

For the synthesis of automata code K0: S × V → {0,1}
*
, irredundant over stochastic LR(1)-

language of L(Gp), it is enough for each coding state si  S' to construct Huffman code K
Н

(i): V(i) →

{0,1}
*
, corresponding to probabilities distribution pi: V(i) → [0,1]. As it is easy to see, the code K0: S

× V → {0,1}
*
 is such that K0(si, v) = K

Н
(i)(v), for all coding si and all v  V(i), is irredundant over

L(G).

For the synthesis of a structural code <K0 , D>, where K0: R → {0,1}
*
, irrespective of the

derivation order, assigned by the function D, it is enough to construct Huffman codes K (i): R {0,1}
*

corresponding to distributions pi: R(i) → [0,1]. The last are set directly in the form of probabilities of

generating rules application ai  ij
p

β
i
j.

I.A. Sheremet Grammatical codings

21

4. Effective Grammatical and Generalized-Prefix Codes Interrelations

Let M1
L(G)

 be a local model of the language L(G) of depth 1 (in this connection any neighbourhood ε

 M1
L(G)

 is a subset of the alphabet V). There takes place

T h e o r e m 7.




 
M

Г
GL)(

1

. (37)

P r o o f . The right part of (37) is none other than algebraic representation of the antiprefixability

graph in the sense of [11], which is being constructed by way of cliques joining (complete subgraphs ε

× ε), corresponding to all possible neighbourhoods of depth 1.

Therefore, for any two symbols vi and vj such that the edge <vi, vj> belongs to the specified graph,

there is at least one left context w in the alphabet V, in which both of them are admissible:

{wvk} · V

*
  L(G)  , (38)

where k = i, j. The latter, in turn, is equivalent to existence of state s of LR(1)-analyzer of the

language L(G), which corresponds to some unreduced string х in the alphabet V  VN such that x
*

G


w. From here s 
)(vi

S and s 
)(v j

S simultaneously, in this connection <vi, vj>  Г. Inverse

proposition (any edge of graph Г belongs to antiprefixability graph) is proved similarly: the presence

of state s 
)(vi

S 
)(v j

S is equivalent to existence of unreduced string х  (V  VN)
*
, from which at

least one string is derived w  V
*
 such that {wvi} · V*  L(G)   and {wvj} · V*  L(G)  .

The latter means that there exists neighbourhood ε, including both vi and v, in this connection vi, vj

 ε × ε. By this means graphs of left-context distinction in sense of the present item 2 and

antiprefixability in sense [11] coincide, which was to be proved.■

Coincidence of the considered graphs is equivalent to the coincidence of corresponding to them

nonredundant context-free and locally-prefix codes (with an accuracy to distinctions in definition

of nonredundness: in relation to the message w  L(G), a s i n [10-12], or in relation to the

language, as in the present paragraph).

 The interrelation between context-free and generalized-prefix codes is also obvious enough

and it is defined by the following theorem in which the statement M1
L(G)

means local model of the

language L(G)of the depth l, and Х
l
(i) is a set of blocks of the length l, admissible in a state si  S.

T h e o r e m 8.

}{)(
)(

XM
l
i

Ss

GL
l 



 . (39)

P r o o f . According to definition of local model of language of the depth l [10-12], M1
L(G)

 is a set

of all neighbourhoods of words w  V
*
 of the depth l . In its turn, the neighbourhood εl(w) is defined

by the expression

εl(w) = {z | | z | =l & {wz} ·V* L(G)    | z | < l & wz  L(G)} (40)

 Special Edition: Hannover Annual Vol.1, 2012

22

Taking into account that the length of a coded word always is multiple to l (if it is not so, it is

appended from the right with a string of the form 
r
, where r is a missing number of auxiliary

symbols ) , it is possible to consider that the case | z | < l in the right part (40) is excluded. Then, it

can be put in correspondence to each neighbourhood εl (w) the unreduced left context – a string х 

(V  VN)
*
, such that wx

*
 . In its turn, х univalently corresponds to some state s i  S. That is why

εi(w) is a set of blocks of the length l , admissible in the state s i , that is Х
l
(i). By this means, some set

Х
l
(i) corresponds to each set εi(w). And by contrast, if there is Х

l
(i), then there exists at least one string

w  V
*

, which is being derived from at least one unreduced string х V  VN, corresponding to the

state s i . But then Х
l
(i) is the neighbourhood of the word w of the depth l, or some set εi(w) univalently

corresponds to each set Х
l
(i) . From here follows the correctness of (39).■

Synthesis of an alphabetic code, irredundant in sense of Ml
L(G)

, is reduced to construction of finite

system of antiprefixability equations in the sense of [11], corresponding to this model, and finding of

its incompressible solution. From conceptual point of view this code supposes symbols with identical

code combinations which are not distinguished by left reduced context х  (V  VN)
*
, but are

distinguished by х and the limited right context in the alphabet {0,1}.

As to comparison of irredundant automata and locally-prefix codes, the basic distinction between

them is included already in their definitions. If the locally-prefix code is based on the fixed

assignment of code combinations to symbols and consequently it is constructed, proceeding from

joining of cliques ε × ε, so the automata coding thanks to a possibility of symbols codes modification

from state to state allows to correlate a unique clique to the recurrent symbol of the message and

corresponding to it partial alphabetic code K
Н

(i): V → {0,1}
*
, adequate to the current state of LR(1)-

analyzer, i.e. finally to the left context of a symbol. As generally | ε |  | V |, the cost of automata

codes, as a rule, is essentially less the cost of alphabetic and, according to the theorem 7, locally-

prefix codes.

In case of automata languages, the reduced left context for each of finite states of automata has the

length 1 and represents non-terminal, corresponding to this state. Thus the partial code K
Н

(i): V →

{0,1}
*
, is constructed for the partial alphabet of symbols, admissible in a state si, i.e. sets of the

marked arcs of the diagram of this automat, starting from node si.

In conclusion of this item 4, we will bring reasoning of generalized character.

For the classical theory of coding is characteristic the replacement of the source, generating the

messages, by a source, generating symbols, probabilities of which occurrence in messages are

mutually independent. At this assumption, the source entropy is the value

),(log)()(2 vp

Vv

vpVH 



  (41)

which is the lower border of classical codes cost. Grammatical interpretation, analyzed in the present

work, developing ideas of the pioneer work of A.A.Markov [10], is oriented on coding of messages

from sets W  V
*
, the source entropy of which is the value

).(log)()(2 wp

Ww

wpWH 



  (42)

In common case H(W)  H(V), that is the theoretic prerequisite of coding efficiency raising for similar

sources. It is necessary to notice that the specified prerequisite is taken as a principle of some known

heuristic methods of compression used in practice (see, for example, [8]). However, grammatical

interpretation allows to realize this prerequisite on the basis of usage of the unified logic means for

description of sets of coded messages – formal grammars – and by that, to ensure the necessary level

of theoretical generality. From the practical point of view the language L(G)  W is essentially more

exact approximation of a set of coded messages, rather than V
*
, that, in turn, allows to approach

considerably the cost of synthesized effective codes to value H(W). Conceptually it is explained by the

I.A. Sheremet Grammatical codings

23

circumstance that the considered methods of codes synthesis ensure the elimination not only

statistical, but also logic redundancy of coding.

5. Block Decoding

The considered grammatical codes, as well as classical Huffman codes, are characterized by rather

low decoding rate, implemented by means of bit-by-bit scanning of binary string. A traditional mode

of increasing the decoding rate is transition to block scanning of the decoded string. As an example of

this method implementation are so-called VB-codes [14] in which code combinations of equal length

are compared to blocks of symbols of primary alphabet, having various lengths, but close probabilities

of occurrence on a coding device input. However, VB-codes, as well as traditional Huffman codes, are

synthesized proceeding from a possibility of coding of any words in the primary alphabet. In this

connection their cost, being a little smaller in comparison with the cost of Huffman codes (thanks to

the partial account of mutual correlation of symbols in coded words), nevertheless concedes to the

cost of grammatical codes synthesized on exact combinatorial-probabilistic descriptions of sets of

coded words (stochastic grammars). Therefore, rather perspective attempt of combination of virtues of

grammatical codes and VB-codes – small cost and high rate of decoding – is represented.

The main idea lying at the heart of considered below approach to its solution, consists in construction

and use of the automata implementing block decoding and corresponding to symbol-by-symbol

coding automata, synthesized according to mentioned above stochastic grammars. The

correspondence is understood in the sense that outputs of bit-by-bit and block decoding coincide. Let

us consider basic elements of block decoding for a case of automata codes, decipherable with a finite

delay over LR(1)-languages.

Let we have function of operations f: S × V → A and function of transitions g: S × (VN  V) → S of

LR(1)-analyzer of the language L(G), and automata code also K: S × V → {0,1}
*
. Here A is a set of

possible operations (transition, accept, error and convolution (jii ma ,)) for all ai  VN , jim = | βi |,

where аi → ji R, that is the number of symbols in the right part of a generating rule аi → ji .

Let at the beginning construct LR(1)-analyzer of the language L' = {AK(w) | w  L(G)}  {0,1}
*
, and

then on its basis – the automat, implementing decoding of words AK(w)  L' by binary blocks of the

length m.

Let us define the function of operations f ': S' × (V  {0,1}) → A and the function of g: S' × (V  VN

 {0,1}) → S' of the specified analyzer. With this aim for all b1b2...br = K(s, v) we will define

f ' (s,b1) = transition, g '(s, b1) = s
(1)

,

…

f ' (s
(k-1)

,bk) = transition, g '(s
(k-1)

, bk) = s
(k)

 , (43)

…

f ' (s
(r-1)

,br) = convolution (v, r), g '(s
(r-1)

, br) = s,

where s

(k)
 (k=1, ..., r-1) are additional states, a set of which corresponds to a set of inner nodes of the

prefix code Ks: V → {0,1}
*
 such that Ks(v) = K(s, v). For all

v  V and a  VN we will define

f ' (s, v) = f (s, v),

g ' (s, v) = g (s, v), (44)

g ' (s, a) = f (s, a).

 Special Edition: Hannover Annual Vol.1, 2012

24

Difference of algorithm of the language L' analyzer from similar algorithm for case L(G) is that at

fulfilling of convolution (v, r) operation after removal from an analysis stack r the upper symbols of

the alphabet {0,1} a symbol v is recorded in the decoded string, the reading head is established on a

position in which the symbol v is situated, after that the analysis proceeds in the usual manner. Thus,

in essence, the string is analyzed

K(
1
is ,

1
iv) ·

1
iv … K(

n
is ,

n
iv)·

n
iv , (45)

where
j

is
 S,

j
iv  V (j= 1, …, n), and also i1 = 0.

Let us get down now to construction of the required decoding automat. We will define mappings λb: S'

→ S' and ψb: S' → (V  {}) so that at input of bit b  {0,1} in a state s  S' automat goes over to a

state λb(s) and gives ψb(s)-symbol of the alphabet v or an empty word . We will express λb and ψb

through f ', g' and mappings v: S' → S' , v  V, corresponding to the functions f and g of the language

L(G) analyzer. Recurrent definition of v, which correctness directly follows from algorithm of LR(1)-

analysis, has the following form:

















.),(and),(),(if ,

,),(and),(),(if)),,((

},,{),(if),,(

)(

sasgmanconvolutiovsfs

sasgmanconvolutiovsfasg

accepttransitionvsfvsg

s
vv  (46)

From the conceptual point of view v (s) is a state in which the analyzer goes over from a state s

because of handling of the next symbol v and in which the analysis of the symbol following v is

necessary. Thus, the third variant in the given definition excludes the possibility of cycling at

construction of v (s).

As it is easy to see,










),,(),(' if),(

,),(' if),,('
)(

rvnconvolutiobsgs

transitionbsgbsf
s

v

b




 (47)










),,(),(' if ,

,),(' if ,
)(

rvnconvolutiobsgv

transitionbsg
s

b

Proceeding from these interrelations, the required mapping of : S' × {0,1}

m
 → V

*
, defining the

automat decoding binary sequences from a set L' by blocks of the length m, can be recorded as

follows:

)),(...())...(()(),...,,(
11121

1 sssbbs bbbbbm b mm
 


 (48)

where · is the symbol of functions superposition. By this means, the decoding automat represents

LR(1)-analyzer of the language L', during which work in the state s  S' are read out recurrent m bits

of decoded binary sequence. A line),...,,(1 mbbs  V
*

is being recorded on their place, the reading

head moves to its beginning and the ordinary LR(1)-analysis proceeds up to reaching the next symbol

from the alphabet {0,1}. The specified steps are fulfilled until the final state will be reached.

Apparently, the constructed automat is defined by relations

f

'(s, 0) = f

'(s, 1) = decoding (m),

g'(s, 0) = g'(s, 1) = s,

f

'(s, v) = f

(s, v), (49)

I.A. Sheremet Grammatical codings

25

g

'(s, v) = g

(s, v),

g

'(s, a) = g

(s, a),

where as well as earlier, f and g are functions of operations and transitions of LR(1)-analyzer of the

language L(G), v  V, a  VN, and decoding (m) is the additional action including described above

operations over the next т bits.

For reduction of the memory size, used during decoding process, it is appropriate to take into

consideration only those states s  S and, accordingly, to store only those values),...,,(1 mbbs , which

are really passed by the automat. For this purpose, we will recurrently define the infinite sequence of

sets

S(i) (i = 0,1...):

}{)0()0(sS  , (50)

m

iii FSS)()()1( ,

where
m
iF)(is a set of states, in which the automat can go over from states s  S(i) as a result of

decoding of the recurrent bit block of the length т.
m
iF)(is defined with the help of the obvious

recurrent state:


m

m

m

i bb

bb

Ss

m

i sF
}1,0{...

)(

1

1

)(

)}(... {


  . (51)

Thus a set S' of states, which are really gone over by the automat during decoding process, is defined

as follows:







0

)('
i

iSS . (52)

The criteria of checking the end of S' construction process is obvious enough: if value j is such that S(j-

1)  S(i) and S(j) = S(j+1), so S(j) = S'.

Let us pass to problems of block coding for a case of automata codes, which are decipherable with a

finite delay over regular languages.

All presented reasoning was referred to automata codes, decipherable over LR(1)-languages. By virtue

of the fact that any regular language is LR(1)- language, all described results concern regular

languages too. At the same time, the specificity of the latter supposes more simple, rather than

general, statements and modes of the subsequent practical application of the specified results. Let

some regular language is presented by a finite automat f: S × V → S that is designated as L(f). The

automat which is coding words of the language L(f) by means of automat code K: S × V {0,1}
*
,

decipherable with a finite delay over this language, can be defined by means of function Ф: S × V → S

× {0,1}
*
, where Ф(s, v) =  f(s, v), K(s, v). We will construct the automat decoding codes of words of

the language L(f) by blocks of the length т. For this purpose, it is enough, starting with Ф, to define

the function Фm
-1

: S × {0, 1}
m

→ S'×V
*
. The decoding automat, which corresponds to this function, at

receiving of the current binary block b1 … bm in a state si  S' goes over to a new state sj  S' and

produces some word w  V
*
. Thus Фm

-1
(si, b1 … bm) = sj, w . We will discover the correlation

between si, b1 … bm from one side and sj, w  – from the other.

Elements of a set of states S' we will designate through si
(x)

, where si  S, х  {0,1}
*
. Thus, by

definition,

si
()

 = si , (53)

si
(i)

 = f(si , v) ,

at K(si , v) = x.

 Special Edition: Hannover Annual Vol.1, 2012

26

States from the left parts of these equalities are, consequently, elements of a set S and in this

connection they are below called as the core. All remaining states si
(x)

 S'-S, corresponding to

inadmissible prefixes of symbols codes, admissible in a state si, are called additional.

It is obvious that the function of transitions of the automat, which is decoding by blocks of length 1,

that is bit by bit, is defined as follows:

f(1) (si
(x)

, b) = si
(xb)

. (54)

On the assumption of this, the function of transitions of the automat, which decodes by blocks of the

length m > 1, is defined by recurrent relation:

f(m) (si
(x)

, b1…bm-1 bm) = f(1) (f(m-1) (si
(x)

, b1…bm-1), bm). (55)

The function of operations of the automat, which is decoding bit by bit, is defined by the following

expression:












).,(& if ,

,' if ,
),(

)(

)(

)(

)1(
vsKxbSsv

SSs
bsg

i

xb

i

xb

ixb

i (56)

In other words, at going over to a state, which is additional, the automat will produce an empty word,

and at going over to a state, which is core – a symbol v such that the sequence of bits which have

arrived after the automat going over to the previous core state si, is a code of the specified symbol in

this state.

The function of the automat operations, which is decoding by blocks of the length m > 1, is defined by

recurrent relation

g(m) (si

(x)
, b1…bm-1 bm) = g(1) (si

(x)
, b1) · g(m-1) (f(1) (si

(x)
, b1), b2,…bm). (57)

By analogy to the automats considered above, the states which are not gone over in the decoding

process, can be excluded from a set S' that generally allows to reduce the volume of the table Фm-1.

Let us pass to problems of block decoding for a case of structural codes, decipherable with a finite

delay over context-free languages. We will remind that to each structural code K: R → {0,1}
*
 it is

possible to put in correspondence a set of rules R' in which every non-terminal has exactly two

alternatives: α → β0 and α → β1.

In its turn the mapping Θ(1): VN'×{0,1} → (V  VN'), where VN' is a set of non-terminals, taking place

in the rules entering in R', is put into correspondence to a set R'. Thus, Θ(a, b) = βb , if a → βb  R'.

The logic of algorithm of the bit-by-bit decoding, using the mapping Θ(1), is defined by following

recurrent relations:

K
-1

(bx, aαz) = K
-1

(x, a Θ(1)(b,α) z), (58)

K
-1

(, a) = a,

in which b{0,1}, aV
*
, αVN', z(V  VN')

*
. Here bx is an unprocessed part of decoded binary

sequence, b is its first bit, a is the result of decoding of the processed part of the specified sequence, α

is the first at the left nonterminal of the sentential form generated in the course of decoding, z is a part

of this SF, following α. After all decoded sequence is settled, SF does not contain non-terminals.

The result of decoding of initial binary sequence x is K
-1

(x, a0), where a0 is an axiom of grammar G '

with set of rules R '.

I.A. Sheremet Grammatical codings

27

Let us construct the mapping Θ(m), ensuring decoding by blocks of length m>1. We will find an

expression for Θ(m)(α, b1…bm), where α  VN', bi  {0,1} (i=1,…, m). For this purpose we will record

a sequence of direct derivations x0x1, x1x2,…, xm-1xm, where

x0 = α,

x1 = Θ(1) (α, b1) = a1 α' z1 ,

x2 = a1 Θ(1) (α', b2) z1= a2 α'' z2 ,

… (59)

xi = ai-1 Θ(1) (α
(i-1)

, bi) zi-1 = ai α
(i)

 zi ,

…

xm = am-1 Θ(1) (α
(m-1)

, bm-1) zm-1 ,

It is obvious from here that Θ(m) (α, b1…bm) = xm. Using these expressions, generally it is possible to

receive 2
m
 values of the function Θ(m) (α, b1…bm) for all binary blocks of length m. We will note,

however, that the case xmV
*
 is possible at i < m. In this connection, formally following the specified

expressions, on all blocks of a form b1… bi bi+1… bm such that xmV
*
, the function Θ(m) is not defined.

For elimination of this inconvenience we will redefine this function in the form

Θ(m) : VN ×{0,1} → (V  VN) × {1,…, m}. Thus for all blocks b1… bi bi+1… bm such that xmV
*
, we

suppose Θ(m) (α, b1… bi bi+1… bm) = xi, i, and for blocks b1…bm Θ(m) (α, b1…bm) = xm, m. At such

definition of Θ (m) the decoding is performed, strictly speaking, by variable length blocks so on each

step the value of the index of the first bit of the current block increases by the value of the second

component of the tuple, which is the value Θ(m), corresponding to the previous block.
Through Θ (m) (α, x) [i], we will designate i component of the tuple which is the value of specified

function (at values of arguments α and x) (i =1, 2), and through (w, j) is a substring of a string w,

including numerals w beginning with j till |w | at their indexing from left to right. Thus, the logic of

decoding algorithm with usage of the mapping Θ(m) can be recorded by means of a relation

K
-1

(xy, aαz) = K
-1

((xy, Θ(m) (α, x) [2])+1, αΘ(m) (α, x) [1] z). (60)

Here x  {0,1}
*
 is the next decoded block of length m, y {0,1}

*
 is an unprocessed part of decoded

binary sequence. Remaining designations have the same sense, as earlier. As well as in case of

automat codes, the information content, used in the course of decoding, is great enough and is

estimated by the value |VN ' | · 2
т
 · d , where d is the average memory size occupied by one value

Θ(m) (α, x). However, as well as for the automat codes, the specified volume can be essentially reduced

at the expense of elimination of the values corresponding to unattainable non-terminals, not used in

the course of derivation. Non-terminal α ' is directly achievable from the nonterminal α during coding-

decoding process by means of the mapping Θ(m) if there is a binary block х of length т such that Θ(m)

(α, x) = z1 α ' z2, i , where z1, z2 (V  VN)
*
. This fact is designated through α→α'. The transitive

closure of binary relation →, designated through



 , is the binary relation, defining a set of pairs  α,

α'  such that α' is achievable from α during coding-decoding. Thus all non-terminals α ' which are not

achievable from an axiom α0, and corresponding to them values Θ(m) (α ', x) can be excluded from

reviewing.

Let's illustrate the described techniques of map Θ construction.

E x a m p l e 10. Let we have structural code K: R → {0,1}
*
, set by the following equalities (A -

an axiom):

 Special Edition: Hannover Annual Vol.1, 2012

28

K (A → aB) = 0,

K (A → aBc) = 10,

K (A → α) = 11, (61)

K (B → d) = 0,

K (B → bB) = 1.

After transformation of a number of rules R to bialternative form we will receive the mapping Θ,

presented in the form of the table 1а (A' is an auxiliary nonterminal). The mapping Θ(2), ensuring

decoding by blocks of length 2 and constructed on a basis of Θ(1), is given in the format of the table

1b.

Table 1.

Θ(1) 0 1 Θ(2) 00 01 10 11

А A → aB A → A' А ad, 2 abB, 2 aBc, 2 d, 2

А' A'→ aBc A → α А' adc, 2 abBc, d, 1 d, 1

B B → d B → bB B d, 1 d, 1 bd, 2 bbB, 2

a) b)

Let we have the word abbd, generated from an axiom А by means of a chain of direct derivations А →

аВ → abB → abbВ → abbd. From here the result of coding the word abbd with the help of structural

code K is 0101. The course of bit-by-bit decoding is shown in the table 2а, each line of which

corresponds to the current step, and the right column contains the result of fulfillment of this and the

previous steps. The course of block decoding is shown in the table 2b, similar to 2a. ■

Table 2.

α b Θ(m)(α, x) α x Θ(1)(α, b)

А 0 aB a А 01 abB, 2 ab

B 1 bB ab B 10 bd, 2 abbd

B 1 bB abb

B 0 α abbd

a) b)

The methods of block decoding, considered in the present monography, are easily spread to alphabetic

codes too, including the traditional codes of variable length synthesized for sources on the exit of

which there can appear any words in the alphabet V. It is possible to present any such source in the

form of a finite automation with the only state s and transitions function f such that f(s, v) = s for any v

 V, then to construct a decoding automat according to this automat and a variable length code, just as

it is described above.

6. Optimization of Syntax Analysis of Coded Messages

The general requirement to methods of syntax analysis (parsing) of the messages, coded by means of

structural codes, is their generality, that is the possibility of application to any unambiguous context-

free grammars.

It means that known methods of the deterministic analysis (both sequential [4], and parallel [15, 16]),

developed for certain classes of grammars (LR(k), LL(k), precedence etc.), from positions of the

I.A. Sheremet Grammatical codings

29

specified restriction are nonapplicable. At the same time, the methods of the global analysis of Unger

type of [17] and its modifications of [18] are applicable. Thereupon we will pay attention that further

the term "syntax analysis optimization" is used by us not casually: optimization is wider concept,

relating to any variety of context-free grammars and, generally speaking, not assuming the determined

analysis.

On the other side, implementation of the deterministic analysis in variety of cases demands rather

considerable storage consumption on operating tables and spending of time for searching in these

tables. In this connection, this analysis can be less effective on the messages which length does not

exceed certain critical value, than the optimized universal analysis (fig. 3). Apparently, the purpose of

optimization of the universal analysis procedure is "shift" of critical value to the right on an axis l (l1

<l2) to the greatest possible limits.

Fig. 3. Qualitative dependences of the message analysis time on its length:

1 – universal non-deterministic method; 2 – universal non-deterministic method with elements of optimization; 3 –

deterministic method.

In this connection, the analysis optimization is treated as minimization of redundant search of

generating rules.

Let us assume as a basis the classical procedure of top-down analysis which logic is defined by

relations (62)-(64):










case;other in ,

,'at),,(
),(

vwwwxPARS
wvxPARS (62)


R

wxPARSwxPARS





),,(),((63)

},{),(PARS (64)

where v  V, α  VN , x  (V  VN)
*
, R is a set of generating rules of context-free grammar G, w is a

message, w  V
*
. If }{),(wxPARS , then wx

*
 , and if ),(wxPARS , then w is not derived

from x  (V  VN)
*
. In algorithmic implementation if there is no necessity to receive all deduction

trees, the analysis is completed immediately after application of relation (64).

t

l l2 l1

1 2
3

 Special Edition: Hannover Annual Vol.1, 2012

30

Computation complexity of top-down analysis procedure is defined finally by enumeration of

alternatives of non-terminals according to expression (63). In this connection the problem of

optimization of the given procedure is reduced to looking for ways of reduction of number of

alternatives by cutting off those of them, for which obviously ),(wxPARS  . The most obvious

method of this problem solution is the construction and use of sets of initial segments of words

derived from alternatives and having the specified length k. Thus (63) is being transformed to the

following form:


)()(

),,(),(







k
FIRSTw

k
S

R

wxPARSwxPARS





 (65)

where Sk(w) is k-symbol prefix of the word w, а FIRSTk() = {w | wx
*
 w' & w  V

k
 & w'  V

*
 } is a

set of k-symbol prefixes of words, deduced from . If for any   VN and any i and j such that

{→i , →j}  R,

FIRSTk(i)  FIRSTk(j) =  (66)

(that corresponds to partition of FIRSTk() into disjoint subsets), then the grammar G = <V , VN , 0,

R> is LL(k)-grammar. At that for any α  VN and w  V
*

|{ | →  R & Sk(w)  FIRSTk()} |  1,

and the analysis is deterministic.

In global Unger analyzer with accelerating tests [17] more refined techniques of reduction of the

alternatives enumeration, based on use of ranges of lengths of words derived from non-terminals (and,

hence, any strings in the alphabet V  VN), and sets of symbols, which complete the specified words

(generally – k-symbol suffixes of these words) is applied. Let us consider the given techniques in

more details. By analogy with FIRSTk(x), where x  (V  VN)
*
, we define LASTk(x) = {w | '

*
wx w &

w'  V
*
 & w  V

k
}. The logic of construction LASTk(x) is as follows:


R

xLASTxLAST





),()((67)










 ,||at }{)(

,||at)))}(({
) (

|| kwwxLAST

kwwS
wxLAST

wk

k
 (68)

where   VN , w  V
*
, –(Sk(-w)) is the result of inverting of k-symbol prefix of a word, received as a

result of inverting of a word w (that is in the end k-symbol suffix).

Let us discover also expressions for the minimum and maximum lengths of the words derived from

strings x  V  VN. Lengths are designated as min(x) and max(x) accordingly. We will define

functions l and l ' from two arguments everyone. The first argument is a string in the alphabet V  VN,

the minimum (maximum) length of which is defined, and the second argument is a set of non-

terminals, used at generation of this string from initial. Upon that, the following relations take place

min(x) = l(x, ), (69)

max(x) = l'(x, ), (70)

I.A. Sheremet Grammatical codings

31










 

,||at

,at),(})}{,({min
) ,(

kw

aaxlal
axl R


  (71)

l(wx, a) = | w | + l(x, a), (72)










 

,||at

,at),('})}{,('{max
) ,('

kw

aaxlal
axl R


  (73)

l'(wx, a) = | w | + l'(x, a), (74)

where in all expressions x  (V  VN)
*
, a  VN ,  VN , w  V

*
. Correctness of relations l(x) = 

and l'(x, a) =  at   a follows from that, in this case there takes place the generation of the form

'
*

yy , where yy'  (V  VN)
+
, and, in such a way, the length of words in the alphabet V, derived

from , is not limited from the top. We exclude the case 
*
 , supposing that context-free

grammar is noncyclic.

With account of (67)-(74) the equality (65) is recorded in the following form:


)(

),,(),(
wB

wxPARSwxPARS





 (75)

where

B(w) = { | →  R & Sk(w)  FIRSTk() & (76)

(b  LASTn()) ( a  V
*
) w = aba' & min()  | ab |  max()}.

As it follows from (75)-(76), for direct application are chosen only those of alternatives, for which

there exists at least one string b  LASTn() (n – some integer number only, not more max()), being a

substring w, and also the length of the preceding it prefix a of a string w is in limits of [min() – n,

max() – n] (at that min()  | ab |  max()).

It is necessary to notice that ranges of the strings lengths derived from non-terminals, are defined a

priori and in the course of analysis, remain constant. At the same time, the real length of the remained

not parsed part of a string allows to correct dynamically an upper bound of the specified range and by

that even more essentially to reduce redundant search. It is obvious that if the string w from (75) is

derived from  x, then the length of prefixes of strings, derived from , is maximum in that case,

when the length of suffixes of strings, derived from x, is minimum. In this connection, it is enough to

redefine (76) as follows:


),(

),,(),(
wxB

wxPARSwxPARS





 (77)

 where

),(wxB = { |  →   R & Sk(w)  FIRSTk() & (78)

(b  LASTn()) ( a  V
*
) w = aba' & min()  | ab |  max(x)}.

At this








 
m

j
j

i

m

i

im
m

imi aaaaa
1

min

1

1

12
1

1min),(||)...( (79)

where)(min
j

i (j = 1, …, m) is defined singlefold relating to a set R.

 Special Edition: Hannover Annual Vol.1, 2012

32

Rather effective means of reduction of alternatives search  →  is checking of analyzed substring as

for symbols entering it, achievable at derivation from these alternatives [18]. We will remind that the

symbol v is achievable from nonterminal , if there exist x, y  (V  VN)
*
 such that yvx

*
 [4]. Let

us designate a set of symbols of alphabet V, achievable from the string z  (V  VN)
*
, through Д(z):

Д(z) = {v | v  V & ( x  (V  VN)
*
) ( y  (V  VN)

*
) yvxz

*
 }

The relations which are used for definition of Д(z), are obvious enough (as well as earlier v  V,  

VN , x  (V  VN)
*
):

Д(vx) = {v}  Д(x), (80)


R

ДxДxД





)),(()()((81)

Having designated through V(a) a set of symbols of the alphabet V, entering the string a, we will

receive the following integral expression for "filtration" of alternatives, generalizing (78):

),(wxB = { |  →   R & Sk(w)  FIRSTk() & (b  LASTn()) (82)

( a  V
*
) w = ba' & V(ab)  Д() & min()  | ab |  | w | – min(x)}.

From the point of view of practical implementation, the efficiency of alternatives filtration, according

to (82), to a large extent depends on an application order of "elementary filters", entering into the

common filter. The most appropriate is the following order:

1) Filtration on entrance of Sk(w)  FIRSTk().

2) For each of the remained alternatives : in the substring w, including symbols from min() to | w |

– min(x)}, the definition of the position j number of the first to the left symbol v  V – Д() (it is clear

that for all left substrings a of the string w, having the length larger than j, the condition V(a)  Д() is

not fulfilled).

3) Redefinition of maximum length of the string deduced from , till j – 1.

4) A cycle on i - number of a string w position from j -1 to k: until the last n symbols of left substring

w of the length i do not enter in LASTn().

For an account of non-uniform distribution of alternatives probability at outcome of the strings,

arriving at an input of the syntactic analyzer, it is appropriate to implement dynamic rearrangement of

alternatives on the method of "stack of books" [14] which subject matter is more known to developers

of operating systems from discipline of substitution LRU. Thus, the used alternative is put into the list

beginning that leads to shift of all remained alternatives on one position to the right. It is clear that

most often used alternatives, as a rule, will be closer to the beginning of the list, and besides there is

no necessity of accumulation of the statistical information here.

7. Parallel Syntax Analysis of Coded Messages

Let us begin with a parallelizing of top-down analysis with reference to the techniques considered in

item 6. The most simple way in this direction is execution of function PARS and all its modifications

in the form of parallel procedures. However, such parallelizing, on the one hand, demands extremely

high expenditures of hardware resource, and with another it has, obviously, the upper border of

efficiency resulting from consecutive "from left to right" processing of the analyzed word. In this

I.A. Sheremet Grammatical codings

33

sense, the method of the two-sided analysis at which the analysis is conducted from both ends of a

word towards each other [16] is more perspective. Such approach under condition of "limiting"

parallelizing of each of counter processes can ensure the further reduction of time of the analysis in

comparison with one-sided parsing. The idea of the piecewise-parallel analysis [16, 19], which subject

matter consists in partition of a parsing word into substrings (for example, programs into operators)

and in parallel analysis of these substrings, is even more fruitful.

All told concerned top-down syntax analysis. As to parallelizing of bottom-up analysis, here there are

certain premises for use of possibilities of computing structures with mass parallelism.

The techniques of parallel top-down analysis considered below is based on construction of the

specialized computing structure, corresponding to a set of rules of the concrete context-free grammar.

The specified structure represents a aggregate of active elements and physical connections ensuring

direct information interchanging between elements. Simplicity of the last and the general principle

ofoperating do such structures similar to systolic. In this connection, they are called hereafter quasi-

systolic structures (QSS). We will notice that construction methods of systolic recognizers of regular

languages are known and are studied well enough [20, 21]. The method of QSS construction

considered below is the development of these methods with reference to wider class of context-free

languages.

Let we have some context-free grammar of the grammar G = <V, VN, 0, R>. We will put in

correspondence to it the oriented graph (G) which techniques of construction is described, in

particular, in [4]. This techniques is illustrated by the following example.

E x a m p l e 11. Let we have a context-free grammar with a set of rules {A → BC, A → Ba, B →

bc, C → BBc, C → c}, the axiom A, the terminal alphabet {a, b, c} and nonterminal alphabet {A, B,

C). The graph(G), represented in fig. 4, corresponds to this grammar. ■

In the graph (G) the number of nodes is | V | + | VN | + | R |, and to each rule there corresponds the

so-called *-node containing a special auxiliary numeral "*" ("concatenator"). The amount of the edges

entering the node  VN, is equal to an amount of alternatives of nonterminal , and each edge is

marked by the alternative number.

Fig. 4. Graph (G), corresponding to grammar G from an example 11

The amount of the edges which arise from the node a  V  VN, is equal to the number of entrances of

a symbol a into right parts of rules from a set R. The edge connecting the node top a  V  VN, with

node top *, corresponding to a rule, into which right part enters symbol a, is marked with a number of

position of the right part occupied with this symbol. Junction of the node * with the node  VN by a

A

*

B

*

*
*

*

C

a

*

b

*

c

1

1

1

3

1

1

1 1

1

2

2

2

2

2

2

2

2

2

3

3

 Special Edition: Hannover Annual Vol.1, 2012

34

edge i means that the string of symbols of the alphabet V  VN, "collected" by node *, is i alternative

of non-terminal . Naturally, no one edge enters the nodes v  V, and any edge does not arise from

the node of axiom of G. Generally the edge i can connect to the node  V not only the node *, but

also the node   V  VN. It means that  → a  R and a is i alternative of nonterminal .

Let us regularize the graph (G), i.e. we will lead it to form when no more than two edges enter each

node and arise from each node. Transformation of regularity assumes performance of following

operations:

1 – regularity of-nodes on inputs;

2 – regularity of *-nodes on inputs;

3 – regularity of all nodes on exits.

Let we have a tree – a subgraph of the graph (G) which root is -node, edges – all edges of the

graph (G) entering into it and leaves – nodes (G) from which these edges arise from. If number n

of leaves of this tree is more than two, we include a new -node in (G), which we connect to a root

by the edge marked with number 2 and with leaves from which the edges arise from, marked with

numbers 1..., n – 1 accordingly. We remove all edges connecting a root of a tree with leaves. Further

on the described transformation it is applied to subtree, the root of which is the introduced node and so

until we will receive from an initial tree such in which the branching factor is equal to two. The

regularity of -nodes of the graph (G) on inputs consists in performance of described operations in

relation to all  – to nodes, the number of edges entering each of which is more than two. If this

number is less than three, the corresponding subgraph of the graph is left without modifications.

Regularization of *-nodes on inputs is similar to described with that difference that *-nodes, but not

- are included in the graph. The nuance, however, consists that the edges marked with numbers of

positions enter *-node, occupied with symbols a  V  VN, in the right part of the rule corresponding

to this *-node. In connection with *-node "multiplication" the specified numbers should be corrected.

The logic of such correcting is obvious: the edge, connecting two *-node, is always marked with

number 2, and the edge connecting -node with *-node is marked with number 1. Exception is the

tree which two leaves are -node. In that case, the edge with a smaller number is marked with one,

and with bigger number – with two.

At last, the regularization of nodes on exits differs from previous by that a root of a tree being

transformed is the node a  V  VN., and leaves are the nodes connected to it by edges arising from it.

It is essential that indexing of these edges is not continuous, as in two previous cases. So, in the graph

(G) in fig. 4 from the node c, arise two edges marked with number 3, and from the node B arise five

edges, marked with numbers 1, 1, 1, 2 and 3. After the regularization of *-nodes on inputs the arising

edges are marked only by numbers 1 and 2, however the edges marked with the same number,

generally more than one. In this connection, the described above logic demands some adaptation to

new conditions. The specified adaptation comes to that after construction of binary prefix tree with a

root a  V  VN and leaves from a set VN  {*} the edges entering in leaves, are marked with the

same numbers, as edges of a graph entering into the same nodes before the regularization exits. The

latter after marking of new edges are removed. In interior non-root nodes of the constructed binary

prefix tree the special symbol v  V  VN  {*} ("multiplicator") is put. In this connection, they are

called hereafter as v-nodes. The edges entering into v-nodes, are not marked.

Naturally, the regularization exits is fulfilled only for nodes from which more than two edges arise.

The graph received from the graph (G) as a result of described operations fulfillment, will be

designated further on through)(G . For more natural representation, from positions of the further

use, we will mark edges)(G with binary figures 0 and 1 instead of decimal 1 and 2 accordingly.

Thus the regularization of the graph of context-free grammar becomes the generalization of

McNaughton – Yamada method [20], regularizing the graphs, corresponding to automat grammars.

We will notice that in the graph)(G the symbols, which are taking place in -nodes, are of no

importance. In this connection, further on we use a unique symbol . Analogously, only those binary

I.A. Sheremet Grammatical codings

35

figures 0 and 1 which mark the edges entering into *-nodes are of importance. In this connection all

remaining edges are not marked.

The regularized graph)(G , corresponding to grammar G with a set of rules {A → cbb, A → abBB, B

→ Ba, B → b}, is represented in fig. 5.
While interpreting nodes as separate elements, and edges as connections between them, it is possible

to consider the graph

)(G as computing structure. However)(G yet is not computing structure as

no algorithm of operation is connected with it, i.e. the information circulating on connections, and the

transformations implemented by elements are finally not defined.

Fig. 5. Regularized graph)(G

Let it be established that a substring of a parsed word w, including (i - j) symbols w, is derived from

nonterminal  ', a substring w, including its (j + 1 - k) symbols, is derived from nonterminal ", a set

of rules of grammar includes a rule  → ' ". From here it is obvious that a substring w, including

its (i - k) symbols, is derived from nonterminal . The asserted is possible to record formally in the

form of the following deduction rule:

.
:

|"',
:1

''
,

:

'

ki
R

kjji








 (83)

This rule forms the basis of the required operation algorithm. On the one hand, it fixes the information

transmitted on connections. This information is non other than couples of numbers, defining co-

ordinates of parsed substrings. And on the other hand, it prescribes the basic transformation,

implementing the bottom-up analysis.

Let's put now into correspondence the type of an active element to each type of the node of

regularized graph)(G . We have, thus, elements of following types:

- t-elements corresponding to symbols of the terminal alphabet;

- -elements corresponding to non-terminals (except for an axiom 0);
- *-elements corresponding to generating rules;
- v-elements;

- 0-element (unique in structure).



v

*

*

*

* 

a

*

b

*

c

1
0

1

0 1

0

v

v

1

0

0

1

1

0

 Special Edition: Hannover Annual Vol.1, 2012

36

For the organization of structure operation we will connect decipherer to it on which input symbols of

a parsed word arrive sequentially, and the exits which number is equal | V | + 1, are connected to

inputs of t-elements. After inflow from the left of i symbol of a parsed word (let this symbol be v)

from its v exit on an input of a corresponding i-element the value i arrives. We will consider the logic

of structure elements operation.
Each t-element has one input connected to the corresponding exit of the decipherer, and two exits, one

of which can be blocked (in the event if the terminal symbol has unique entrance into right parts of

rules of a set R as, for example, the symbol c in fig. 5). On receipt of the number i on the input, the t-

element will transmit simultaneously to both exits the pair <i, i>.

Each -element has two inputs, one of which can be blocked (if corresponding nonterminal has a

unique alternative), and two exits, one of which also can be blocked (if this nonterminal has a unique

entrance into right parts of rules). On receipt of a pair <i, i> on one of inputs, -element transmits this

pair simultaneously to both exits. If both inputs activate, the transmission of both pairs happens

sequentially.

Each *-element has exactly two inputs and only one exit. Besides, *-elements unlike all others possess

memory in which two arrays are accumulated: M0 and M1 – pairs of numbers which have arrived on

"zero" and "one" inputs accordingly. On receipt of a pair <i, j> on a zero input it is brought in array

M0, after that in M1 array a pair <j + 1, k> is searched, and if it takes place, the pair <i, k> arrives on

input of *-element. The operations fulfilled after inflow of a pair <i, j> on the only one input are

similar: <i, j> it is brought in array M1, and the pair <k, i - 1> is searched in array M0. In case of

success, the pair <k, j> arrives on the exit.
Each v-element has a single input and exactly two exits. On receipt of a pair <i, j> on an input, it is

transmitted simultaneously to both exits.

As for 0-element it differs from -element by memory presence on one number, the additional

operating input, connected with | V | + 1 exits of the decipherer, and a single exit for transmission of

resulting signal (1/0 – success/failure). | V | + 1-st exit of the decipherer corresponds to the right

terminator of a parsed word and serves for transmission of position number of this terminator on an

operating input of -element. It is clear that at transmission of value i the length of a parsed word

equals to i – 1. That is why the operation of0-element at inflow on any of informational inputs of

the pair <1, k> is composed of comparison of k with value k ', available in memory, and, if k > k ', in

replacement k' for k. If on an operating input the number i arrives, and in memory there is the number

i – 1, the 0-element will produce a resulting signal "success"; otherwise – "failure". In an initial

condition, 0 is stored in memory of 0-element.

As is obvious, structure elements are extremely simple and similar among themselves. This allows

unifying t-, - and v-elements.

It is clear, why the structure is named quasi-systolic: each step of its operation consists in information

"pushing through" on connections, and with simultaneous adding on upwards subtrees of analysis of

an arriving word, which in the form of arrays M0 and M1 are stored in memory of *-elements. Thus,

subtrees are constructed in a parallel way and substantially independently from each other.

Synchronization of parallel processes and "assembling" of subtrees is fulfilled by *-elements.

Speed and cost of quasi-systolic structures (QSS) fatefully depend on *-elements: volumes of their

memory and access time to arrays M0 and M1. Various approaches to the organization of the specified

arrays are possible.

For reduction of information volume in arrays M0 and M1 it is possible to complicate a little bit the

algorithm of -element, having included in it the checking of performance of a condition min  j - i +

1 max, where min and max are minimum and maximum lengths of strings in the alphabet V, derived

from nonterminal, corresponding to this element. Values min and max are defined from relations (69)-

(74). Upon that, transmission of the pair <i, j> on exits of -element is made only at performance of

the specified condition. An obvious consequence of it is absence of such pairs in *-element, the

"nearest" to -element, which "absorbed" them. We will pay attention also that the recurrent entering

symbol and the number of its position can arrive on the decipherer immediately after the release of the

latter, after handling of a previous symbol. The same principle of synchronization can be implemented

I.A. Sheremet Grammatical codings

37

for all remaining elements. Hardware implementation of syntactic analysis of coded messages on the

basis of QSS ensures formation of codes of messages synchronously with construction of their

derivation trees.

More detailed analysis of quasi-systolic structures (QSS) is beyond the scope of problems of this

monograph.

Conclusion

The grammatical approach to coding, considered in the presented work, is universal enough

theoretical tool for the analysis of efficiency of possible methods of compression of the big databases

with the known structure of elements. Practical application of the considered algorithms during more

than twenty years has shown that the most expedient area of use of the approach is archiving of

databases within the framework of which, in some cases, it was possible to reach compression of

accumulated arrays 2-3 times more essential, than at use of known methods (Huffman, Lempel-Ziv,

etc.). Thus, the decrease in rate of coding in comparison with analogues was compensated by high

enough rate of block decoding and by hardware implementation of codecs.

From positions of development of the described approach, the following directions represent the

greatest interest:

1) Coding-decoding on the basis of "stack of books" techniques, excluding the necessity of

accumulation and constant actualization of statistical information (distributions of probabilities of

generating rules application in structural codes and occurrence of symbols in coding states in automata

codes).

2) Generalization of approach on grammars, generating two-dimensional and three-dimensional

images.

3) Usage of structural codes as a basis of implementation of associative access to elements of

databases, which is considered in the basics in [6].

Possible versions of grammatical codings for solution of these problems will make a subject of

subsequent publications.

 Special Edition: Hannover Annual Vol.1, 2012

38

Bibliography

1. Markov A.A. An Introduction to the Theory of Coding. – Moscow: Nauka, 1982 (in Russian).

2. Huffman D. Methods of Codes with Minimum Redundancy Construction. – Cybernetics

collection. Vol. 3. – Moscow: Foreign Literature, 1961 (Russian Translation).

3. Fu K. Structural Methods in Automatical Recognition. – Moscow: Mir, 1977 (Russian

Translation).

4. Aho A., Ullman J. Theory of Syntax Analysis, Interpreting and Compilation. Vol. 1, 2. –

Moscow: Mir, 1978 (Russian Translation).

5. Sheremet I.A. Effective Coding of the Formalized Messages. - Cybernetics and the System

Analysis, 1992, No. 3 (in Russian).

6. Sheremet I.A. Intellectual Software Medias for Automated Information Processing System

(AIPS). – Moscow: Nauka, 1994 (in Russian).

7. Zhiltsova L.P. About Algorithmic Complexity of Problems of Optimum Alphabetic Coding for

Context-free Languages. – Discrete Mathematics, 1989, No. 2 (in Russian).

8. Cormack G.V. Data Compression on a Database System. – Comminucations of the ACM. –

Vol. 28 (1986), No. 12.

9. Sachkov В.Н. Combinatorial methods of discrete mathematics. – Moscow: Nauka, 1977 (in

Russian).

10. Markov A.A. About Dependence of Efficiency of Alphabetic Coding on the Language of

Messages. – Reports of Academy of Sciences of the Union of Soviet Socialist Republics (AS

USSR). – Vol. 258 (1981), No. 2 (in Russian).

11. Markov A.A. System of Equations of Antiprefixability in Words. – Discrete Mathematics, 1990,

No 2 (in Russian).

12. Markov A.A., Smirnova T.G. Algorithmic foundation of generalized –prefix coding. – Reports

of AS USSR. – Vol. 274 (1984), No. 4 (in Russian).

13. Wetherel C.S. Probabilistic Languages: A Review and Some Open Questions. – ACM

Computing Surveys. – Vol. 12 (1980), No. 4.

14. Krichevskiy R.E. Compression and Retrieving of Information. – Moscow: Radio and

Communication, 1989 (in Russian).

15. Trakhtenherts E.A. An Introduction to the Theory of Analysis and Parallelizing of Computer

Programs in Translation Process. – Moscow: Nauka, 1981 (in Russian).

16. Trakhtenherts E.A. Software Parallel Processes. – Moscow: Nauka, 1987 (in Russian).

I.A. Sheremet Grammatical codings

39

17. Unger S.H. A Global Parser for Context-Free Phrase Structure Grammars. – Communications

ACM. – Vol. 11 (1968), No. 4.

18. Bratchikov I.L. Syntax of Programming Languages. – Moscow: Nauka, 1975 (in Russian).

19. Kupriyanov B.V. Parallel Syntactic Analysis Based on LR(k)-analysis. – Cybernetics Problems.

Issue 3. – Moscow: 1978 (in Russian).

20. Ullman J. Computation Aspects VLSI (very-large-scale integration circuit). – Moscow: Radio

and Communication, 1990 (Russian Translation).

21. Forster J. Silicon Compiler and Crystal for Clarification // Electronics VLSI. Designing of

Microstructures. – Moscow: Mir, 1989 (Russian Translation).

